Bài 4.17 trang 105 SBT đại số 10


Giải bài 4.17 trang 105 sách bài tập đại số 10. Tìm giá trị lớn nhất của hàm số...

Đề bài

Tìm giá trị lớn nhất của hàm số  \(y = \sqrt {1 - x}  + \sqrt {1 + x} \) trên \(\left[ { - 1,1} \right]\)

A. max \(y = 0\)               B. max \(y = 2\)

C. max \(y = 4\)               D. max \(y = \sqrt 2 \)

Phương pháp giải - Xem chi tiết

Bình phương và sử dụng bất đẳng thức Cô-si \(2\sqrt {ab}  \le a + b\)

Lời giải chi tiết

\(\begin{array}{l}
{y^2} \\= 1 - x + 1 + x + 2\sqrt {\left( {1 - x} \right)\left( {1 + x} \right)} \\
= 2 + 2\sqrt {\left( {1 - x} \right)\left( {1 + x} \right)} \\
\le 2 + \left( {1 - x} \right) + \left( {1 + x} \right)\\
= 2 + 2 = 4\\
\Rightarrow {y^2} \le 4 \Rightarrow y \le 2\\
\Rightarrow \max y = 2
\end{array}\)

Ta thấy khi \(x = 0\) thì \(y = 2\).

Vậy đáp án B đúng.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Bất đẳng thức

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài