Bài 3.14 trang 148 SBT hình học 10


Giải bài 3.14 trang 148 sách bài tập hình học 10. Viết phương trình đường thẳng...

Đề bài

Viết phương trình đường thẳng đi qua điểm \(M(2;5)\) và cách đều hai điểm \(A(-1;2)\) và \(B(5;4)\).

Lời giải chi tiết

Gọi đường thẳng \(d\) cần tìm có phương trình dạng \(ax + by + c = 0\).

\(d\) đi qua \(M\left( {2;5} \right)\) nên \(2a + 5b + c = 0\) \( \Leftrightarrow c =  - 2a - 5b\).

Khi đó \(d:ax + by - 2a - 5b = 0\).

\(d\left( {A,d} \right) = d\left( {B,d} \right)\) \( \Leftrightarrow \dfrac{{\left| { - a + 2b - 2a - 5b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \dfrac{{\left| {5a + 4b - 2a - 5b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

\( \Leftrightarrow \left| { - 3a - 3b} \right| = \left| {3a - b} \right|\) \( \Leftrightarrow \left[ \begin{array}{l} - 3a - 3b = 3a - b\\ - 3a - 3b =  - \left( {3a - b} \right)\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}6a =  - 2b\\b = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3a =  - b\\b = 0\end{array} \right.\)

TH1: \(3a =  - b\), chọn \(a = 1 \Rightarrow b =  - 3\) ta có phương trình \(x - 3y + 13 = 0\).

TH2: \(b = 0\), chọn \(a = 1\) ta được phương trình \(x - 2 = 0\).

Vậy \({d_1}:x - 3y + 13 = 0\), \({d_2}:x - 2 = 0\).

Loigiaihay.com


Bình chọn:
3.6 trên 9 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài