Bài 3.13 trang 148 SBT hình học 10


Đề bài

Tìm phương trình của tập hợp các điểm cách đều hai đường thằng: \({\Delta _1}:5x + 3y - 3 = 0\) và \({\Delta _2}:5x + 3y + 7 = 0\).

Phương pháp giải - Xem chi tiết

- Gọi \(M\left( {x;y} \right)\) là điểm bất kì thuộc đường thẳng cần tìm.

- Sử dụng tính chất \(d\left( {M,{\Delta _1}} \right) = d\left( {M,{\Delta _2}} \right)\) để suy ra phương trình.

Lời giải chi tiết

Gọi \(M\left( {x;y} \right)\) là điểm bất kì thuộc đường thẳng cách đều hai đường thẳng đã cho.

Khi đó \(d(M,{\Delta _1}) = d(M,{\Delta _2})\)\( \Leftrightarrow \dfrac{{\left| {5x + 3y - 3} \right|}}{{\sqrt {25 + 9} }} = \dfrac{{\left| {5x + 3y + 7} \right|}}{{\sqrt {25 + 9} }}\)

\( \Leftrightarrow 5x + 3y - 3 =  \pm \left( {5x + 3y + 7} \right)\) \( \Leftrightarrow \left[ \begin{array}{l}5x + 3y - 3 = 5x + 3y + 7\\5x + 3y - 3 =  - \left( {5x + 3y + 7} \right)\end{array} \right.\)

\( \Leftrightarrow 5x + 3y + 2 = 0\).

Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài