Bài 3.3 trang 147 SBT hình học 10


Đề bài

Lập phương trình tổng quát của đường thẳng \(\Delta \) trong mỗi trường hợp sau:

a) \(\Delta \) đi qua điểm M(1;1) và có vectơ pháp tuyến \(\overrightarrow n  = (3; - 2);\)

b) \(\Delta \) đi qua điểm A(2;-1) và có hệ số góc \(k =  - \dfrac{1}{2}\);

c) \(\Delta \) đi qua hai điểm A(2;0) và B(0;-3).

Phương pháp giải - Xem chi tiết

a) Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) và nhận \(\overrightarrow n  = \left( {a;b} \right)\) làm VTPT thì có phương trình tổng quát \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) = 0\).

b) Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) và có hệ số góc \(k\) thì có phương trình \(y = k\left( {x - {x_0}} \right) + {y_0}\).

c) Tìm VTCP \(\overrightarrow u \) rồi suy ra VTPT \(\overrightarrow n \). Từ đó viết phương trình theo công thức ở câu a.

Lời giải chi tiết

a) \(\Delta \) đi qua điểm M(1;1) và có vectơ pháp tuyến \(\overrightarrow n  = (3; - 2)\) nên có phương trình:

\(3\left( {x - 1} \right) - 2\left( {y - 1} \right) = 0\) hay \(3x - 2y - 1 = 0\);

b) \(\Delta \) đi qua điểm A(2;-1) và có hệ số góc \(k =  - \dfrac{1}{2}\) nên có phương trình \(y =  - \dfrac{1}{2}\left( {x - 2} \right) - 1\) hay \(y + 1 =  - \dfrac{1}{2}\left( {x - 2} \right)\) \( \Leftrightarrow x + 2y = 0\).

c) Ta có: \(\overrightarrow {AB}  = \left( { - 2; - 3} \right)\) nên \(\overrightarrow {{n_{AB}}}  = \left( {3; - 2} \right)\).

Đường thẳng \(\Delta \) đi qua \(A\left( {2;0} \right)\) và nhận \(\overrightarrow {{n_{AB}}}  = \left( {3; - 2} \right)\) làm VTPT nên có phương trình \(3\left( {x - 2} \right) - 2\left( {y - 0} \right) = 0\) hay \(3x - 2y - 6 = 0\).

Loigiaihay.com


Bình chọn:
4.3 trên 8 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.