Bài 3.10 trang 148 SBT hình học 10


Giải bài 3.10 trang 148 sách bài tập hình học 10. Tìm góc giữa hai đường thẳng...

Đề bài

Tìm góc giữa hai đường thẳng : \({d_1}:x + 2y + 4 = 0\) và \({d_2}:2x - y + 6 = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính góc giữa hai đường thẳng \(\cos \left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) là các VTPT của hai đường thẳng.

Lời giải chi tiết

Ta có: \({d_1}\) có VTPT \(\overrightarrow {{n_1}}  = \left( {1;2} \right)\)

\({d_2}\) có VTPT \(\overrightarrow {{n_2}}  = \left( {2;-1} \right)\)

\(\cos \left( {{d_1},{d_2}} \right) = \dfrac{{\left| {2.1 - 1.2} \right|}}{{\sqrt {1 + 4} \sqrt {4 + 1} }} = 0\).

Vậy góc giữa \(\left( {{d_1},{d_2}} \right) = {90^0}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài