Bài 3.10 trang 148 SBT hình học 10


Giải bài 3.10 trang 148 sách bài tập hình học 10. Tìm góc giữa hai đường thẳng...

Đề bài

Tìm góc giữa hai đường thẳng : \({d_1}:x + 2y + 4 = 0\) và \({d_2}:2x - y + 6 = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính góc giữa hai đường thẳng \(\cos \left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) là các VTPT của hai đường thẳng.

Lời giải chi tiết

Ta có: \({d_1}\) có VTPT \(\overrightarrow {{n_1}}  = \left( {1;2} \right)\)

\({d_2}\) có VTPT \(\overrightarrow {{n_2}}  = \left( {2;-1} \right)\)

\(\cos \left( {{d_1},{d_2}} \right) = \dfrac{{\left| {2.1 - 1.2} \right|}}{{\sqrt {1 + 4} \sqrt {4 + 1} }} = 0\).

Vậy góc giữa \(\left( {{d_1},{d_2}} \right) = {90^0}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí