Bài 3.6 trang 147 SBT hình học 10


Đề bài

Cho tam giác ABC, biết phương trình đường thẳng \(AB:x - 3y + 11 = 0\) , đường cao \(AH = 3x + 7y - 15 = 0\) , đường cao \(BH:3x - 5y + 13 = 0\) . Tìm phương trình hai đường thẳng chứa hai cạnh còn lại của tam giác.

Phương pháp giải - Xem chi tiết

- Tìm tọa độ điểm \(A\).

- Viết phương trình đường thẳng \(AC\) (đi qua \(A\) và vuông góc \(BH\) ).

- Tìm tọa độ \(B\) và suy ra phương trình \(BC\).

Lời giải chi tiết

Theo đề bài tọa độ điểm A luôn thỏa mãn hệ phương trình:

\(\left\{ \begin{array}{l}x - 3y =  - 11\\3x + 7y = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 2\\y = 3.\end{array} \right.\)

Vì \(AC \bot BH\) nên AC có dạng \(5x + 3y + c = 0\), ta có:

\(A \in AC \Leftrightarrow  - 10 + 9 + c = 0 \Leftrightarrow c = 1.\)

Vậy phương trình đường thẳng chứa cạnh \(AC:5x + 3y + 1 = 0.\)

Tọa độ của điểm B luôn thỏa mãn hệ phương trình:

\(\left\{ \begin{array}{l}x - 3y =  - 11\\3x - 5y =  - 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 5.\end{array} \right.\)

Vì \(BC \bot AH\) nên BC có dạng \(7x - 3y + c = 0\), ta có:

\(B \in BC \Leftrightarrow 28 - 15 + c = 0 \Leftrightarrow c =  - 13.\)

Vậy phương trình đường thẳng chứa cạnh \(BC:7x - 3y - 13 = 0.\)

Loigiaihay.com


Bình chọn:
4 trên 8 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài