Bài 2.63 trang 105 SBT hình học 10


Giải bài 2.63 trang 105 sách bài tập hình học 10. Cho tam giác ABC có...

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC có \(a = 12,b = 16,c = 20\)

LG a

Tính diện tích S và chiều cao \({h_a}\) của tam giác;

Phương pháp giải:

 Sử dụng công thức Hê rông \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) tính diện tích.

Từ đó suy ra chiều cao \({h_a}\).

Giải chi tiết:

Theo công thức Hê – rông với \(p = \dfrac{1}{2}(12 + 16 + 20) = 24\)

Ta có: \(S = \sqrt {24\left( {24 - 12} \right)\left( {24 - 16} \right)\left( {24 - 20} \right)}  = 96\)

\({h_a} = \dfrac{{2S}}{a} = \dfrac{{2.96}}{{12}} = 16\)

LG b

Tính độ dài đường trung tuyến \({m_a}\) của tam giác;

Phương pháp giải:

Sử dụng công thức trung tuyến \(m_a^2 = \dfrac{{2({b^2} + {c^2}) - {a^2}}}{4}\).

Giải chi tiết:

 \(m_a^2 = \dfrac{{2({b^2} + {c^2}) - {a^2}}}{4}\)\( = \dfrac{{2\left( {{{16}^2} + {{20}^2}} \right) - {{12}^2}}}{4} = 292\)

\( \Rightarrow {m_a} = \sqrt {292}  \approx 17,09\)

LG c

Tính bán kính R và \(r\)của các đường tròn ngoại tiếp và nội tiếp tam giác.

Phương pháp giải:

 Sử dụng công thức \(S = \dfrac{{abc}}{{4R}}\) và \(S = pr\).

Giải chi tiết:

\(R = \dfrac{{abc}}{{4S}} = \dfrac{{12.16.20}}{{4.96}} = 10;\)\(r = \dfrac{S}{p} = \dfrac{{96}}{{24}} = 4\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.