Bài 2.63 trang 105 SBT hình học 10


Giải bài 2.63 trang 105 sách bài tập hình học 10. Cho tam giác ABC có...

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC có \(a = 12,b = 16,c = 20\)

LG a

Tính diện tích S và chiều cao \({h_a}\) của tam giác;

Phương pháp giải:

 Sử dụng công thức Hê rông \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) tính diện tích.

Từ đó suy ra chiều cao \({h_a}\).

Giải chi tiết:

Theo công thức Hê – rông với \(p = \dfrac{1}{2}(12 + 16 + 20) = 24\)

Ta có: \(S = \sqrt {24\left( {24 - 12} \right)\left( {24 - 16} \right)\left( {24 - 20} \right)}  = 96\)

\({h_a} = \dfrac{{2S}}{a} = \dfrac{{2.96}}{{12}} = 16\)

Quảng cáo
decumar

LG b

Tính độ dài đường trung tuyến \({m_a}\) của tam giác;

Phương pháp giải:

Sử dụng công thức trung tuyến \(m_a^2 = \dfrac{{2({b^2} + {c^2}) - {a^2}}}{4}\).

Giải chi tiết:

 \(m_a^2 = \dfrac{{2({b^2} + {c^2}) - {a^2}}}{4}\)\( = \dfrac{{2\left( {{{16}^2} + {{20}^2}} \right) - {{12}^2}}}{4} = 292\)

\( \Rightarrow {m_a} = \sqrt {292}  \approx 17,09\)

LG c

Tính bán kính R và \(r\)của các đường tròn ngoại tiếp và nội tiếp tam giác.

Phương pháp giải:

 Sử dụng công thức \(S = \dfrac{{abc}}{{4R}}\) và \(S = pr\).

Giải chi tiết:

\(R = \dfrac{{abc}}{{4S}} = \dfrac{{12.16.20}}{{4.96}} = 10;\)\(r = \dfrac{S}{p} = \dfrac{{96}}{{24}} = 4\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.