

Đố vui trang 56 Tài liệu dạy – học Toán 8 tập 1>
Giải bài tập Trên một mảnh vườn hình vuông với độ dài cạnh là 2x (dm), người ta trồng xung quanh một luống hoa có bề rộng 4 dm
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Trên một mảnh vườn hình vuông với độ dài cạnh là 2x (dm), người ta trồng xung quanh một luống hoa có bề rộng 4 dm với diện tích là S1 (dm2). Trên một mảnh vườn hình chữ nhật có độ dài cạnh là x (dm) và 4x (dm), người ta trồng một luống hoa có bề rộng 4 dm với diện tích là S2 (dm2). Em hãy tính S1 và S2 rồi lập tỷ số \({{{S_1}} \over {{S_2}}}\) . Đố em diện tích nào lớn hơn ?
Lời giải chi tiết
Phần đất không trồng hoa của mảnh đất hình vuông là hình vuông cạnh là:
\(2x - 4.2 = 2x - 8\,\,\left( {dm} \right)\)
Diện tích phần đất đó là: \(\left( {2x - 8} \right)\left( {2x - 8} \right) = {\left( {2x - 8} \right)^2}\,\,\left( {d{m^2}} \right)\)
Diện tích mảnh vườn hình vuông là \(\left( {2x} \right)\left( {2x} \right) = 4{x^2}\,\,\left( {d{m^2}} \right)\)
Ta có: \({S_1} = 4{x^2} - {\left( {2x - 8} \right)^2} = 4{x^2} - 4{x^2} + 32x - 64 = 32x - 64\)
Phần đất không trồng hoa của mảnh vườn hình chữ nhật là hình chữ nhật có độ dài cạnh là \(x - 4.2 = x - 8\,\,\left( {dm} \right)\) và \(4x - 4.2 = 4x - 8\,\,\left( {dm} \right)\)
Diện tích phần đất đó là: \(\left( {x - 8} \right)\left( {4x - 8} \right)\,\,\left( {d{m^2}} \right)\)
Diện tích mảnh vườn hình chữ nhật là \(x.4x = 4{x^2}\,\,\left( {d{m^2}} \right)\)
Ta có: \({S_2} = 4{x^2} - \left( {x - 8} \right)\left( {4x - 8} \right) = 4{x^2} - 4{x^2} + 8x + 32x - 64 = 40x - 64\)
Do đó: \({{{S_1}} \over {{S_2}}} = {{32x - 64} \over {40x - 64}}\)
Vì \(40x - 64 > 32x - 64\) nên \({{{S_1}} \over {{S_2}}} < 1\).
Vậy \({S_2} > {S_1}\).
Loigiaihay.com

