Bài 9 trang 41 SGK Đại số và Giải tích 11

Bình chọn:
3.3 trên 6 phiếu

Giải bài 9 trang 41 SGK Đại số và Giải tích 11. Nghiệm âm lớn nhất của phương trình:

Đề bài

Nghiệm âm lớn nhất của phương trình \(2{\tan ^2}x + 5\tan x + 3 = 0\) là:

A. \({{ - \pi } \over 3}\)             B. \({{ - \pi } \over 4}\)             C. \({{ - \pi } \over 6}\)               D. \({{ - 5\pi } \over 6}\)

Phương pháp giải - Xem chi tiết

Giải phương trình bậc hai của hàm tan. Sau đó giải phương trình lượng giác cơ bản và biểu diễn các nghiệm trên đường tròn lượng giác.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
2{\tan ^2}x + 5\tan x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}
\tan x = - 1\\
\tan x = - \frac{3}{2}
\end{array} \right.\\
\tan x = - 1 \Leftrightarrow x = - \frac{\pi }{4} + k\pi \\
\tan x = - \frac{3}{2} \Rightarrow x = \arctan \left( { - \frac{3}{2}} \right) + k\pi
\end{array}\)

Dựa vào đường tròn lượng giác ta có: \(x =  - {\pi  \over 4}\) là nghiệm âm lớn nhất của phương trình đã cho.

Chọn đáp án B.

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương I - Hàm số lượng giác và phương trình lượng giác

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu