Bài 7 trang 41 SGK Đại số và Giải tích 11

Bình chọn:
3.5 trên 11 phiếu

Giải bài 7 trang 41 SGK Đại số và Giải tích 11. Phương trình...

Đề bài

Phương trình \({{\cos 4x} \over {\cos 2x}} = \tan 2x\) có số nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\) là:

A. \(2\)                  B. \( 3\)

C. \(4\)                  D. \(5\)

Phương pháp giải - Xem chi tiết

+) Sử dụng công thức \(\tan 2x = \frac{{\sin 2x}}{{\cos 2x}}\), quy đồng, bỏ mẫu.

+) Sử dụng công thức nhân đôi: \(\cos 4x = 1 - 2{\sin ^2}2x\)

+) Giải phương trình bậc hai của \(\sin 2x\).

+) Giải phương trình lượng giác cơ bản của hàm sin.

Lời giải chi tiết

Điều kiện: \(cos2x ≠ 0 ⇔ sin2x ≠  ± 1\)

Ta có: 

\({{\cos 4x} \over {\cos 2x}} = {{\sin 2x} \over {\cos 2x}} \Rightarrow \cos 4x = \sin 2x\)

\(\Leftrightarrow 1 - 2si{n^2}2x = \sin 2x\)

\( \Leftrightarrow 2{\sin ^2}2x + \sin 2x - 1 = 0\)

\( \Leftrightarrow \left[ \matrix{
\sin 2x = - 1 \hfill\text{(loại)} \cr
\sin 2x = {1 \over 2} \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& \sin 2x = {1 \over 2} = \sin {\pi \over 6} \cr
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 6} + k2\pi \hfill \cr
2x = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over {12}} + k\pi \hfill \cr
x = {{5\pi } \over {12}} + l\pi \hfill \cr} \right.k,l \in \mathbb{Z}\cr} \)

Ta lại có:

 \(x \in (0,{\pi \over 2})\)

\(x = {\pi \over {12}} + k\pi :0 < {\pi \over {12}} + k\pi < {\pi \over 2}\)

\(\Leftrightarrow 0 < {1 \over {12}} + k < {1 \over 2}\)

\(\Leftrightarrow {{ - 1} \over {12}} < k < {5 \over {12}}(k \in \mathbb{Z}) \Rightarrow k = 0\)

\(x = {{5\pi } \over {12}} + l\pi :0 < {{5\pi } \over {12}} + l\pi < {\pi \over 2}\)

\(\Leftrightarrow 0 < {5 \over {12}} + l < {1 \over 2} \)

\(\Leftrightarrow {{ - 5} \over {12}} < l < {1 \over {12}}(l \in \mathbb{Z}) \Rightarrow l = 0\)

Vậy phương trình có đúng \(2\) nghiệm thuộc khoảng \((0,{\pi  \over 2})\) 

Chọn đáp án A.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng