Bài 7 trang 176 SGK Đại số và Giải tích 11

Bình chọn:
3.7 trên 7 phiếu

Giải bài 7 trang 176 SGK Đại số và Giải tích 11. Viết phương trình tiếp tuyến:

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình tiếp tuyến:

LG a

Của hypebol \(y = {{x + 1} \over {x - 1}}\) tại \(A (2, 3)\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có: \(y' = f'(x) = {{ - 2} \over {{{(x - 1)}^2}}} \Rightarrow f'(2) = {{ - 2} \over {{{(2 - 1)}^2}}} =  - 2\)

Suy ra phương trình tiếp tuyến cần tìm là:

\(y =  - 2\left( {x - 2} \right) + 3 =  - 2x + 7\)

LG b

Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành độ \(x_0= -1\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có: \(y’ = f’(x) = 3x^2+ 8x ⇒ f’(-1) = 3 – 8 = -5\)

Mặt khác: \(x_0= -1 ⇒ y_0= -1 + 4 – 1 = 2\)

Vậy phương trình tiếp tuyến cần tìm là:

\(y – 2 = -5 (x + 1) ⇔ y = -5x – 3\)

LG c

Của parabol \(y = x^2– 4x + 4\) tại điểm có tung độ \(y_0= 1\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có:

\(y_0= 1 ⇒ 1 = x_0^2- 4x_0+ 4 ⇒ x_0^2– 4x_0+ 3 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = 3
\end{array} \right.\)

\(f’(x) = 2x – 4 ⇒ f’(1) = -2\) và \(f’(3) = 2\)

Vậy có hai tiếp tuyến cần tìm có phương trình là:

\(y – 1 = -2 (x – 1) ⇔ y = -2x + 3\)

\(y – 1 = 2 (x – 3) ⇔ y = 2x – 5\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng