Bài 2 trang 176 SGK Đại số và Giải tích 11

Bình chọn:
3.8 trên 8 phiếu

Giải bài 2 trang 176 SGK Đại số và Giải tích 11. Tính đạo hàm của các hàm số sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của các hàm số sau

LG a

\(y = 2\sqrt x {\mathop{\rm sinx}\nolimits}  - {{\cos x} \over x}\)

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản và các quy tắc tính đạo hàm của tích, thương.

Lời giải chi tiết:

a)

\(y' =\left (2\sqrt x {\mathop{\rm sinx}\nolimits}  - {{\cos x} \over x}\right)'\)

\(\begin{array}{l}
= 2\left( {\sqrt x \sin x} \right)' - \left( {\dfrac{{\cos x}}{x}} \right)'\\
= 2\left[ {\left( {\sqrt x } \right)'\sin x + \sqrt x .\left( {\sin x} \right)'} \right] - \dfrac{{\left( {\cos x} \right)'.x - x'\cos x}}{{{x^2}}}
\end{array}\)

\(\eqalign{
& = 2{1 \over {2\sqrt x }}\sin x + 2\sqrt x\cos x - {{ - x\sin x - \cos x} \over {{x^2}}} \cr 
& = \dfrac{{\sqrt x \sin x}}{x} + 2\sqrt x \cos x + \frac{{x\sin x + \cos x}}{{{x^2}}}\cr & = {{x\sqrt x \sin x + 2{x^2}\sqrt x\cos x + x\sin x + \cos x} \over {{x^2}}} \cr 
& = {{x(\sqrt x + 1)\sin x + (2{x^2}\sqrt x + 1)cosx} \over {{x^2}}} \cr} \)

LG b

\(\displaystyle y = {{3\cos x} \over {2x + 1}}\)

Lời giải chi tiết:

\(\begin{array}{*{20}{l}}
{b)y'  = \dfrac{{3\left( {\cos x} \right)'\left( {2x + 1} \right) - 3\cos x\left( {2x + 1} \right)'}}{{{{\left( {2x + 1} \right)}^2}}}\\= \dfrac{{ - 3\sin x\left( {2x + 1} \right) - 2.3\cos x}}{{{{\left( {2x + 1} \right)}^2}}}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{{ - 6x\sin x - 3\sin x - 6\cos x}}{{{{\left( {2x + 1} \right)}^2}}}}
\end{array}\)

LG c

\(\displaystyle y = {{{t^2} + 2\cos t} \over {\sin t}}\)

Lời giải chi tiết:

LG d

\(y = {{2\cos \varphi  - \sin \varphi } \over {3\sin \varphi  + \cos \varphi }}\)

Lời giải chi tiết:

LG e

\(y = {{\tan x} \over {\sin x + 2}}\)

Lời giải chi tiết:

LG f

\(\displaystyle y = {{\cot x} \over {2\sqrt x  - 1}}\)

Lời giải chi tiết:

\(y'  = \dfrac{{\left( {\cot x} \right)'\left( {2\sqrt x  - 1} \right) - \cot x\left( {2\sqrt x  - 1} \right)'}}{{{{\left( {2\sqrt x  - 1} \right)}^2}}}\\= \dfrac{{\dfrac{{ - 1}}{{{{\sin }^2}x}}\left( {2\sqrt x  - 1} \right) - \cot x.\dfrac{1}{{\sqrt x }}}}{{{{\left( {2\sqrt x  - 1} \right)}^2}}}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay