Bài 1 trang 176 SGK Đại số và Giải tích 11


Tính đạo hàm của các hàm số sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của các hàm số sau

LG a

\(y = {{{x^3}} \over 3} - {{{x^2}} \over 2} + x - 5\)

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản và các quy tắc tính đạo hàm của tích, thương.

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {\dfrac{{{x^3}}}{3}} \right)' - \left( {\dfrac{{{x^2}}}{2}} \right)' + \left( x \right)' - \left( 5 \right)'\\
= \dfrac{{3{x^2}}}{3} - \dfrac{{2x}}{2} + 1\\
= {x^2} - x + 1
\end{array}\)

LG b

\(\displaystyle y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {\dfrac{2}{x}} \right)' - \left( {\dfrac{4}{{{x^2}}}} \right)' + \left( {\dfrac{5}{{{x^3}}}} \right)' - \left( {\dfrac{6}{{7{x^4}}}} \right)\\ =  - \dfrac{2}{{{x^2}}} - \dfrac{{ - 4.\left( {{x^2}} \right)'}}{{{x^4}}} + \dfrac{{ - 5\left( {{x^3}} \right)'}}{{{x^6}}} - \dfrac{{ - 6\left( {{x^4}} \right)'}}{{7{x^8}}}\\ =- \dfrac{2}{{{x^2}}} + \dfrac{{4.2x}}{{{x^4}}} - \dfrac{{5.3{x^2}}}{{{x^6}}} + \dfrac{{6.4{x^3}}}{{7{x^8}}}\\
= - \dfrac{2}{{{x^2}}} + \dfrac{8}{{{x^3}}} - \dfrac{{15}}{{{x^4}}} + \dfrac{{24}}{{7{x^5}}}\\
\end{array}\)

LG c

\(\displaystyle y = {{3{x^2} - 6x + 7} \over {4x}}\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \dfrac{{\left( {3{x^2} - 6x + 7} \right)'.4x - \left( {3{x^2} - 6x + 7} \right).\left( {4x} \right)'}}{{{{\left( {4x} \right)}^2}}}\\= \dfrac{{\left( {6x - 6} \right).4x - 4\left( {3{x^2} - 6x + 7} \right)}}{{16{x^2}}}\\
 = \dfrac{{24{x^2} - 24x - 12{x^2} + 24x - 28}}{{16{x^2}}}\\
= \dfrac{{12{x^2} - 28}}{{16{x^2}}} = \dfrac{{3{x^2} - 7}}{{4{x^2}}}\\
\end{array}\)

Cách khác:

\(\begin{array}{l}
y = \dfrac{3}{4}x - \dfrac{3}{2} + \dfrac{7}{{4x}}\\
y' = \left( {\dfrac{3}{4}x} \right)' - \left( {\dfrac{3}{2}} \right)' + \left( {\dfrac{7}{{4x}}} \right)'\\
= \dfrac{3}{4} - 0 - \dfrac{7}{{4{x^2}}}\\
= \dfrac{{3{x^2} - 7}}{{4{x^2}}}
\end{array}\)

LG d

\(\displaystyle y = ({2 \over x} + 3x)(\sqrt x  - 1)\)

Lời giải chi tiết:

\(\begin{array}{l}
y'  = \left( {\dfrac{2}{x} + 3x} \right)'\left( {\sqrt x  - 1} \right) + \left( {\dfrac{2}{x} + 3x} \right)\left( {\sqrt x  - 1} \right)'\\= \left( { - \dfrac{2}{{{x^2}}} + 3} \right)\left( {\sqrt x - 1} \right) + \left( {\dfrac{2}{x} + 3x} \right).\dfrac{1}{{2\sqrt x }}\\
= \dfrac{{ - 2}}{{x\sqrt x }} + \dfrac{2}{{{x^2}}} + 3\sqrt x - 3 + \dfrac{1}{{x\sqrt x }} + \dfrac{3}{2}\sqrt x \\
\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 1}}{{x\sqrt x }} + \dfrac{2}{{{x^2}}} + \dfrac{{9\sqrt x }}{2} - 3\\
\end{array}\)

LG e

\(\displaystyle y = {{1 + \sqrt x } \over {1 - \sqrt x }}\)

Lời giải chi tiết:

\(\begin{array}{l}
y'  = \dfrac{{\left( {1 + \sqrt x } \right)'\left( {1 - \sqrt x } \right) - \left( {1 + \sqrt x } \right)\left( {1 - \sqrt x } \right)'}}{{{{\left( {1 - \sqrt x } \right)}^2}}}\\ =\dfrac{{\dfrac{1}{{2\sqrt x }}\left( {1 - \sqrt x } \right) + \dfrac{1}{{2\sqrt x }}\left( {1 + \sqrt x } \right)}}{{{{\left( {1 - \sqrt x } \right)}^2}}}\\
= \dfrac{1}{{\sqrt x {{\left( {1 - \sqrt x } \right)}^2}}}\\
\end{array}\)

LG f

\(\displaystyle y = {{ - {x^2} + 7x + 5} \over {{x^2} - 3x}}\)

Lời giải chi tiết:

\(\begin{array}{l}
y'  = \dfrac{{\left( { - {x^2} + 7x + 5} \right)'\left( {{x^2} - 3x} \right) - \left( { - {x^2} + 7x + 5} \right)\left( {{x^2} - 3x} \right)'}}{{{{\left( {{x^2} - 3x} \right)}^2}}}\\= \dfrac{{\left( { - 2x + 7} \right)\left( {{x^2} - 3x} \right) - \left( {2x - 3} \right)\left( { - {x^2} + 7x + 5} \right)}}{{{{\left( {{x^2} - 3x} \right)}^2}}}\\
= \dfrac{{ - 2{x^3} + 13{x^2} - 21x + 2{x^3} - 17{x^2} + 11x + 15}}{{{{\left( {{x^2} - 3x} \right)}^2}}}\\
= \dfrac{{ - 4{x^2} - 10x + 15}}{{{{\left( {{x^2} - 3x} \right)}^2}}}
\end{array}\)

Loigiaihay.com


Bình chọn:
4.2 trên 21 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.