Bài 10 trang 177 SGK Đại số và Giải tích 11

Bình chọn:
3.6 trên 5 phiếu

Giải bài 10 trang 177 SGK Đại số và Giải tích 11. Tính:

Đề bài

Với \(g(x) = {{{x^2} - 2x + 5} \over {x - 1}}\); \(g’(2)\) bằng:

A. \(1\)                                    B. \(-3\)

C. \(-5\)                                 D. \(0\)

Phương pháp giải - Xem chi tiết

Sử dụng bảng đạo hàm cơ bản và quy tắc tính đạo hàm của thương.

Lời giải chi tiết

\(\begin{array}{l}
g'\left( x \right) = \dfrac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 5} \right)}}{{{{\left( {x - 1} \right)}^2}}}\\
g'\left( x \right) = \dfrac{{2{x^2} - 4x + 2 - {x^2} + 2x - 5}}{{{{\left( {x - 1} \right)}^2}}}\\
g'\left( x \right) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\\
\Rightarrow g'\left( 2 \right) = \dfrac{{{2^2} - 2.2 - 3}}{{{{\left( {2 - 1} \right)}^2}}} = - 3
\end{array}\)

Chọn đáp án B.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu