Bài 10 trang 177 SGK Đại số và Giải tích 11

Bình chọn:
3.6 trên 5 phiếu

Giải bài 10 trang 177 SGK Đại số và Giải tích 11. Tính:

Đề bài

Với \(g(x) = {{{x^2} - 2x + 5} \over {x - 1}}\); \(g’(2)\) bằng:

A. \(1\)                                    B. \(-3\)

C. \(-5\)                                 D. \(0\)

Phương pháp giải - Xem chi tiết

Sử dụng bảng đạo hàm cơ bản và quy tắc tính đạo hàm của thương.

Lời giải chi tiết

\(\begin{array}{l}
g'\left( x \right) = \dfrac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 5} \right)}}{{{{\left( {x - 1} \right)}^2}}}\\
g'\left( x \right) = \dfrac{{2{x^2} - 4x + 2 - {x^2} + 2x - 5}}{{{{\left( {x - 1} \right)}^2}}}\\
g'\left( x \right) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\\
\Rightarrow g'\left( 2 \right) = \dfrac{{{2^2} - 2.2 - 3}}{{{{\left( {2 - 1} \right)}^2}}} = - 3
\end{array}\)

Chọn đáp án B.

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng