Bài 7 trang 122 SGK Hình học 11

Bình chọn:
3.3 trên 10 phiếu

Giải bài 7 trang 122 SGK Hình học 11. Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\), góc \(\widehat {BAD} = 60^0\) và \(SA = SB = SD = {{a\sqrt 3 } \over 2}\)

a) Tính khoảng cách từ \(S\)  đến mặt phẳng \((ABCD)\) và độ dài cạnh \(SC\)

b) Chứng minh mặt phẳng \((SAC)\) vuông góc với mặt phẳng \((ABCD)\)

c) Chứng minh \(SB\) vuông góc với \(BC\)

d) Gọi \(\varphi\) là góc giữa hai mặt phẳng \((SBD)\) và \((ABCD)\). Tính \(\tan\varphi\)

Phương pháp giải - Xem chi tiết

a) Gọi \(H\) là tâm đường tròn ngoại tiếp tam giác \(ABD\) thì \(SH \bot \left( {ABCD} \right)\).

Sử dụng định lí Pitago tính \(SH\) và \(SC\).

b) Chứng minh mặt phẳng \((SAC)\) chứa 1 đường thẳng vuông góc với mặt phẳng \((ABCD)\).

c) Sử dụng định lí Pitago đảo chứng minh \(Delta SBC\) vuông tại B.

d) Sử dụng phương pháp xác định góc giữa hai mặt phẳng.

Lời giải chi tiết

a) Kẻ \(SH⊥(ABCD)\)

Do \(SA = SB = SD\) suy ra \(HA = HB = HC\)

\(⇒ H\) là tâm đường tròn ngoại tiếp tam giác \( ABD\).

Ta có: \(AB = AD = a\) và \(\widehat{ BAD} = 60^0\) nên \(\Delta ABD\) là tam giác đều cạnh \(a\) \( \Rightarrow AO = \dfrac{{a\sqrt 3 }}{2},\,\,AH = \dfrac{2}{3}AO = \dfrac{{a\sqrt 3 }}{3},\,\)\(CH = \dfrac{{2a\sqrt 3 }}{3}\)

Trong tam giác vuông \(SAH\), ta có: \(SA = {{a\sqrt 3 } \over 2};AH = {{a\sqrt 3 } \over 3}\)

\( \Rightarrow SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {\dfrac{{3{a^2}}}{4} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt {15} }}{6}\)

Trong tam giác vuông \(SHC\): \(S{C^2} = S{H^2} + H{C^2}\Rightarrow SC = {{a\sqrt 7 } \over 2}\)

b) \(\left. \matrix{SH \bot (ABCD) \hfill \cr SH \subset (SAC) \hfill \cr} \right\} \Rightarrow (SAC) \bot (ABCD)\)

c) Ta có:

\(S{C^2} = \dfrac{{7{a^2}}}{4};\,\,B{C^2} = {a^2};\,\,S{B^2} = \dfrac{{3{a^2}}}{4}\)\( \Rightarrow S{C^2} = B{C^2} + S{B^2}\)

\(\Rightarrow \Delta SBC\) vuông tại \(B\) \( \Rightarrow SB \bot BC.\)

d) Ta có:

\(\eqalign{
& \left. \matrix{
DB \bot AC \hfill \cr
SH \bot (ABCD) \Rightarrow SH \bot DB \hfill \cr} \right\} \Rightarrow DB \bot (SAC) \cr
& \Rightarrow \left\{ \matrix{
DB \bot {\rm{OS}} \hfill \cr
{\rm{DB}} \bot AC \hfill \cr} \right. \cr} \)

Suy ra: \(\widehat{ SOH}\) là góc giữa hai mặt phẳng \((SBD)\) và \((ABCD)\)

Ta có: 

\(\begin{array}{l}
SO = \sqrt {S{D^2} - O{D^2}} = \sqrt {\dfrac{{3{a^2}}}{4} - \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt 2 }}{2}\\
\Rightarrow OH = \sqrt {S{O^2} - S{H^2}} = \sqrt {\frac{{{a^2}}}{2} - \dfrac{{15{a^2}}}{{36}}} = \dfrac{{a\sqrt 3 }}{6}\\
\Rightarrow \tan \varphi = \dfrac{{SH}}{{OH}} = \dfrac{{\dfrac{{a\sqrt {15} }}{6}}}{{\dfrac{{a\sqrt 3 }}{6}}} = \sqrt 5
\end{array}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Ôn tập chương III - Vectơ trong không gian. Quan hệ vuông góc trong không gian

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu