Bài 11 trang 125 SGK Hình học 11

Bình chọn:
3.8 trên 5 phiếu

Giải bài 11 trang 125 SGK Hình học 11. Khoảng cách giữa hai cạnh đối của một tứ diện đều cạnh a là bằng:

Đề bài

Khoảng cách giữa hai cạnh đối của một tứ diện đều cạnh \(a\) là bằng:

(A) \({{3a} \over 2}\)                    (B) \({{a\sqrt 2 } \over 2}\)

(C) \({{a\sqrt 3 } \over 2}\)                  (D) \(a\sqrt2\)

Phương pháp giải - Xem chi tiết

Xác định đoạn vuông góc chung của hai đường thẳng \(AB\) và \(CD\). Tính độ dài đoạn vuông góc chung đó.

(Đoạn nối hai trung điểm hai cạnh đối diện của một tứ diện đều là đoạn vuông góc chung của hai cạnh đó)

Lời giải chi tiết

Gọi \(I\) là trung điểm cạnh \(AB\); \(J\) là trung điểm của cạnh \(CD\).

Ta có: \(\Delta ACD = \Delta BCD\,\,\left( {c.c.c} \right) \Rightarrow AJ = BJ\) (hai đường trung tuyến tương ứng).

\( \Rightarrow \Delta JAB\) cân tại J \( \Rightarrow JI \bot AB\).

Chứng minh tương tự \(\Delta ICD\) cân tại I \(\Rightarrow IJ \bot CD\).

\(\Rightarrow IJ\) là đoạn vuông góc của cạnh \(AB\) và \(CD\).

\( \Rightarrow d\left( {AB;CD} \right) = IJ\)

Tứ diện cạnh a nên:

\(\eqalign{
& BJ = {{a\sqrt 3 } \over 2},BI = {a \over 2} \cr
& \Rightarrow {\rm{I}}{{\rm{J}}^2} = B{J^2} - B{I^2} \cr
& \Rightarrow {\rm{I}}{{\rm{J}}^2} = {{2{a^2}} \over 4} \Rightarrow {\rm{I}}{{\rm{J}}^2} = {{a\sqrt 2 } \over 2} \cr} \)

Vậy \(d\left( {AB;CD} \right) = \frac{{a\sqrt 2 }}{2}\).

Loigiaihay.com 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng