Bài 7 trang 29 SGK Đại số và Giải tích 11


Giải bài 7 trang 29 SGK Đại số và Giải tích 11. Giải các phương trình sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\begin{array}{l}\,\,\sin 3x - \cos 5x = 0\\\end{array}\)

Phương pháp giải:

Chuyển vế, sử dụng công thức \(\sin x = \cos \left( {\frac{\pi }{2} - x} \right)\) đưa phương trình về dạng \(\cos \alpha = \cos \beta \Leftrightarrow \left[ \begin{array}{l}\alpha = \beta + k2\pi \\\alpha = - \beta + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\,\,\sin 3x - \cos 5x = 0\\\Leftrightarrow \cos 5x=\sin 3x = \cos \left( {\frac{\pi }{2} - 3x} \right)\\\Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} - 3x + k2\pi \\5x = - \frac{\pi }{2} + 3x + k2\pi \end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x = - \frac{\pi }{4} + k\pi \end{array} \right.\,\,\,\left( {k \in Z} \right)\end{array}\)

Vậy nghiệm phương trình là: \(x=\frac{\pi }{16}+\frac{k\pi }{4} (k\in Z)\) và \(x=-\frac{\pi }{4} +k\pi, (k\in \mathbb{Z})\)

Cách khác:

sin3x - cos5x = 0

Vậy nghiệm phương trình là: \(x=\frac{\pi }{16}+\frac{k\pi }{4} (k\in Z)\) và \(x=-\frac{\pi }{4} +k\pi, (k\in \mathbb{Z})\)

LG b

\(\begin{array}{l}\,\,\tan 3x\tan x = 1\end{array}\)

Phương pháp giải:

Tìm ĐKXĐ.

Sử dụng các công thức: \(\frac{1}{{\tan x}} = \cot x = \tan \left( {\frac{\pi }{2} - x} \right)\) đưa phương trình về dạng \(\tan \alpha  = \tan \beta  \Leftrightarrow \alpha  = \beta  + k\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

Điều kiện:

\(\begin{array}{l}\left\{ \begin{array}{l}\cos 3x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{6} + \frac{{k\pi }}{3}\\x \ne \frac{\pi }{2} + k\pi \end{array} \right. \Rightarrow x \ne \frac{\pi }{6} + \frac{{k\pi }}{3}\,\,\left( {k \in Z} \right)\end{array}\)

\(\begin{array}{l}\tan 3x\tan x = 1\\\Leftrightarrow \tan 3x = \frac{1}{{\tan x}} \\ \Leftrightarrow \tan 3x = \cot x \\ \Leftrightarrow \tan 3x = \tan \left( {\frac{\pi }{2} - x} \right)\\ \Leftrightarrow 3x = \frac{\pi }{2} - x + k\pi \\\Leftrightarrow 4x = \frac{\pi }{2} + k\pi \\\Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\end{array}\)

Vậy nghiệm phương trình là \(x=\frac{\pi }{8}+\frac{k \pi }{4}, \)\(k \in \mathbb{Z}\).

Chú ý:

Ở bài này ta thấy ngay họ nghiệm \(x=\frac{\pi }{8}+\frac{k \pi }{4}, k \in \mathbb{Z}\) không có nghiệm nào vi phạm điều kiện xác định nên ta lấy cả họ nghiệm và không phải loại bỏ điểm nào.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 41 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Gửi bài