Bài 1 trang 28 SGK Đại số và Giải tích 11

Bình chọn:
3.9 trên 75 phiếu

Giải bài 1 trang 28 SGK Đại số và Giải tích 11. Giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\begin{array}{l}\,\,\sin \left( {x + 2} \right) = \frac{1}{3}\\\end{array}\)

Phương pháp giải:

\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi - \alpha + k2\pi 
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
a)\,\,\sin \left( {x + 2} \right) = \frac{1}{3}\\
\Leftrightarrow \left[ \begin{array}{l}
x + 2 = \arcsin \frac{1}{3} + k2\pi \\
x + 2 = \pi - \arcsin \frac{1}{3} + k2\pi 
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \frac{1}{3} - 2 + k2\pi \\
x = \pi - \arcsin \frac{1}{3} - 2 + k2\pi 
\end{array} \right.\,\,\left( {k \in Z} \right)
\end{array}\)

Vậy nghiệm của phương trình là \(x=arcsin \frac{1}{3}-2+k2 \pi (k\in \mathbb{Z})\) hoặc \(x=\pi - arcsin \frac{1}{3}-2+k2 \pi (k\in \mathbb{Z})\)

LG b

\(\begin{array}{l} \,\,\sin 3x = 1\\\end{array}\)

Phương pháp giải:

\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi - \alpha + k2\pi 
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
b)\,\,\sin 3x = 1\\
\Leftrightarrow 3x = \frac{\pi }{2} + k2\pi \\
\Leftrightarrow x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\,\,\left( {k \in Z} \right)
\end{array}\)

Vậy nghiệm của phương trình là \(x=\frac{\pi }{6}+\frac{k2 \pi}{3},(k\in \mathbb{Z})\)

LG c

\(\begin{array}{l} \,\,\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right) = 0\\\end{array}\)

Phương pháp giải:

\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi - \alpha + k2\pi 
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
c)\,\,\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right) = 0\\
\Rightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi \\
\Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi \\
\Leftrightarrow x = \frac{\pi }{2} + \frac{{3k\pi }}{2}\,\,\left( {k \in Z} \right)
\end{array}\)

Vậy nghiệm của phương trình là \(x=\frac{\pi }{2}+k.\frac{3\pi }{2}, k\in Z\)

LG d

\(\begin{array}{l} \,\,\sin \left( {2x + {{20}^0}} \right) = - \frac{{\sqrt 3 }}{2}
\end{array}\)

Phương pháp giải:

\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi - \alpha + k2\pi 
\end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
\,\,\sin \left( {2x + {{20}^0}} \right) = - \frac{{\sqrt 3 }}{2}\\
\Leftrightarrow \sin \left( {2x + {{20}^0}} \right) = \sin \left( { - {{60}^0}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
2x + {20^0} = - {60^0} + k{360^0}\\
2x + {20^0} = {180^0} + {60^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = - {80^0} + k{360^0}\\
2x = {220^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - {40^0} + k{180^0}\\
x = {110^0} + k{180^0}
\end{array} \right.\,\,\,\left( {k \in Z} \right)
\end{array}\)

Vậy nghiệm của phương trình là \(x=-40^0+k180^0, (k\in \mathbb{Z})\) hoặc \(x=110^0+k180^0, (k\in \mathbb{Z})\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng