Bài 4 trang 29 SGK Đại số và Giải tích 11

Bình chọn:
4.8 trên 48 phiếu

Giải bài 4 trang 29 SGK Đại số và Giải tích 11. Giải phương trình

Đề bài

Giải phương trình \({{2\cos 2x} \over {1 - \sin 2x}} = 0\)

Phương pháp giải - Xem chi tiết

+) Tìm ĐKXĐ.

+) \(\frac{A}{B} = 0 \Leftrightarrow A = 0\)

+) Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết

Điều kiện \(sin2x\neq 1\Leftrightarrow 2x\neq \frac{\pi }{2}+k2 \pi\Leftrightarrow x\neq \frac{\pi }{4}+k \pi(k\in \mathbb{Z})\)

\({{2\cos 2x} \over {1 - \sin 2x}} = 0\Rightarrow 2cos2x=0\) 

\( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \)

\(\Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\)

Kết hợp điều kiện ta có \(x =  - \frac{\pi }{4} + k\pi \,\,\left( {k \in Z} \right)\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan