Bài 6 trang 29 SGK Đại số và Giải tích 11

Bình chọn:
4.3 trên 40 phiếu

Giải bài 6 trang 29 SGK Đại số và Giải tích 11. Với những giá trị nào của x

Đề bài

Với những giá trị nào của \(x\) thì giá trị của các hàm số \(y = tan ( \frac{\pi}{4}- x)\) và \(y = tan2x\)  bằng nhau?

Phương pháp giải - Xem chi tiết

Giải phương trình \(\tan \left( {\frac{\pi }{4} - x} \right) = \tan 2x\)

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
\tan \left( {\frac{\pi }{4} - x} \right) = \tan 2x\\
DK:\,\,\left\{ \begin{array}{l}
\frac{\pi }{4} - x \ne \frac{\pi }{2} + m\pi \\
2x \ne \frac{\pi }{2} + m\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x \ne - \frac{\pi }{4} - m\pi \\
x \ne \frac{\pi }{4} + \frac{{m\pi }}{2}
\end{array} \right.\\
\Leftrightarrow x \ne \frac{\pi }{4} + \frac{{m\pi }}{2}\,\,\left( {m \in Z} \right)
\end{array}\)

Khi đó phương trình tương đương với:

\(\begin{array}{l}
\,\,\,\,\,\,\,2x = \frac{\pi }{4} - x + k\pi \\
\Leftrightarrow 3x = \frac{\pi }{4} + k\pi \\
\Leftrightarrow x = \frac{\pi }{{12}} + \frac{{k\pi }}{3}\,\,\,\left( {k \in Z} \right)
\end{array}\)

Kết hợp điều kiện ta có: 

\(\begin{array}{l}
\,\,\,\,\,\,\frac{\pi }{{12}} + \frac{{k\pi }}{3} \ne \frac{\pi }{4} + \frac{{m\pi }}{2}\\
\Leftrightarrow \frac{{k\pi }}{3} \ne \frac{{m\pi }}{2} + \frac{\pi }{6}\\
\Leftrightarrow k \ne \frac{{3m + 1}}{2}\,\,\,\left( {k,m \in Z} \right)
\end{array}\)

Vậy phương trình có nghiệm: \(x = \frac{\pi }{{12}} + \frac{{k\pi }}{3}\,\,\,\left( {k \ne \frac{{3m + 1}}{2}\,\,\,\left( {k,m \in Z} \right)} \right)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng