
Đề bài
Cho hình vuông C1 có cạnh bằng 4. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (hình bên). Từ hình vuông C2 lại tiếp tục như trên để được hình vuông C3… Tiếp tục quá trình trên, ta nhận được các dãy các hình vuông C1, C2, C3, …,Cn
Gọi an là độ dài cạnh của hình vuông Cn. Chứng minh dãy số (an) là một cấp số nhân.
Video hướng dẫn giải
Lời giải chi tiết
Xét dãy số \((a_n)\), ta có \(a_1= 4\).
Gọi \({a_n}\) là cạnh hình vuông \({C_n}\).
Ta tính cạnh hình vuông \({a_{n + 1}}\) như sau:
Xét tam giác \(BEF\) vuông tại \(B\) có \(BE = \dfrac{3}{4}BA = \dfrac{{3{a_n}}}{4}\), \(BF = \dfrac{1}{4}BC = \dfrac{{{a_n}}}{4}\)
Do đó \(EF = \sqrt {B{E^2} + B{F^2}} \) \( = \sqrt {{{\left( {\dfrac{{3{a_n}}}{4}} \right)}^2} + {{\left( {\dfrac{{{a_n}}}{4}} \right)}^2}} = \dfrac{{\sqrt {10} }}{4}{a_n}\) hay \({a_{n + 1}} = \dfrac{{\sqrt {10} }}{4}{a_n}\).
Vậy dãy số \((a_n)\) là cấp số nhân với số hạng đầu là \(a_1= 4\) và công bội \(\displaystyle q = {{\sqrt {10} } \over 4}\)
Loigiaihay.com
Giải bài 5 trang 104 SGK Đại số và Giải tích 11. Tỉ lệ tăng dân số của tỉnh X là 1,4%. Biết rằng số dân của tỉnh hiện nay là 1,8 triệu người.
Tìm cấp số nhân có sau số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.
Tìm các số hạng của cấp số nhân có năm số hạng, biết:
Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.
Chứng minh các dãy số sau là các cấp số nhân
Tính tổng...
Tính tổng số các hạt thóc ở 11 ô đầu của bàn cờ nêu ở hoạt động 1.
Cho cấp số nhân...
Giải câu hỏi 2 trang 99 SGK Đại số và Giải tích 11. Hãy đọc hoạt động 1 và cho biết ô thứ 11 có bao nhiêu hạt thóc?...
Tục truyền rằng nhà vua Ấn Độ cho phép người phát minh ra bàn cờ Vua được lựa chọn một phần thưởng tùy theo sở thích...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: