Bài 2 trang 103 SGK Đại số và Giải tích 11


Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho cấp số nhân với công bội \(q\).

LG a

Biết \(u_1= 2, u_6= 486\). Tìm \(q\)

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}.{q^{n - 1}}\).

Lời giải chi tiết:

Ta có: \({u_6} = {u_1}.{q^5} \Leftrightarrow 486 = 2.{q^5}\) \( \Leftrightarrow {q^5} = 243 \Leftrightarrow q = 3\)

LG b

Biết \(q = \dfrac{2}{3}\), \(u_4= \dfrac{8}{21}\). Tìm \(u_1\)

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}.{q^{n - 1}}\).

Lời giải chi tiết:

Ta có: \({u_4} = {u_1}.{q^3} \) \(\Leftrightarrow \dfrac{8}{{21}} = {u_1}.{\left( {\dfrac{2}{3}} \right)^3} = {u_1}.\dfrac{8}{{27}}\) \( \Leftrightarrow {u_1} = \dfrac{9}{7}\)

LG c

Biết \(u_1= 3, q = -2\). Hỏi số \(192\) là số hạng thứ mấy?

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}.{q^{n - 1}}\).

Lời giải chi tiết:

Gọi số hạng thứ \(n\) của cấp số nhân bằng \(192\) ta có:

\(\begin{array}{l}
{u_n} = {u_1}.{q^{n - 1}} \Leftrightarrow 192 = 3.{\left( { - 2} \right)^{n - 1}}\\ \Leftrightarrow {\left( { - 2} \right)^{n - 1}} = 64=(-2)^6\\ \Leftrightarrow n - 1 = 6 \Leftrightarrow n = 7
\end{array}\)

Vậy \(192\) là số hạng thứ \(7\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 38 phiếu

Các bài liên quan: - Bài 4. Cấp số nhân

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài