Câu hỏi 3 trang 101 SGK Đại số và Giải tích 11


Cho cấp số nhân...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho cấp số nhân \(({u_n})\) với \({u_1}\; =  - 2\) và \(\displaystyle q = {{ - 1} \over 2}\)

LG a

Viết năm số hạng đầu của nó

Lời giải chi tiết:

\(\eqalign{
& \cr 
& {u_1} = - 2 \cr 
& {u_2} = {u_1}.q = - 2.{{ - 1} \over 2} = 1 \cr 
& {u_3} = {u_2}.q = 1.{{ - 1} \over 2} = {{ - 1} \over 2} \cr 
& {u_4} = {u_3}.q = {{ - 1} \over 2}.{{ - 1} \over 2} = {1 \over 4} \cr 
& {u_5} = {u_4}.q = {1 \over 4}.{{ - 1} \over 2} = {{ - 1} \over 8} \cr} \)

LG b

So sánh \(u_2^2\) với tích \({u_1}.{u_3}\) và \(u_3^2\) với tích \({u_2}.{u_4}\)

Nêu nhận xét tổng quát từ kết quả trên.

Lời giải chi tiết:

\(\eqalign{
& {u_2}^2 = 1^2=1 \cr 
& {u_1}.{u_3} = {u_1}.q = - 2.{{ - 1} \over 2} = 1 \cr 
& \Rightarrow {u_2}^2 = {u_1}.{u_3} \cr 
& {u_3}^2 = {\left( {{{ - 1} \over 2}} \right)^2} = {1 \over 4} \cr 
& {u_2}.{u_4} = 1.{1 \over 4} = {1 \over 4} \cr 
& \Rightarrow {u_3}^2 = {u_2}.{u_4} \cr 
& \text{Do đó }:\,{u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\,k \ge 2 \cr} \)

Loigiaihay.com 


Bình chọn:
4.4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.