Bài 4 trang 104 SGK Đại số và Giải tích 11

Bình chọn:
3.5 trên 15 phiếu

Giải bài 4 trang 104 SGK Đại số và Giải tích 11. Tìm cấp số nhân có sau số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.

Đề bài

Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức số hạng tổng quát của CSN: \({u_n} = {u_1}{q^{n - 1}}\) và công thức tổng n số hạng đầu tiên của CSN: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)

Theo giả thiết ta có:

               \({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\).        (1)

               \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\).        (2)

Nhân hai vế của (1) với \(q\), ta được:  \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)

 hay  \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)

\(\Rightarrow 62 = 31.q \Rightarrow q = 2\).

Ta có \({S_5} = 31 \Leftrightarrow \frac{{{u_1}\left( {1 - {2^5}} \right)}}{{1 - 2}} = 31 \Leftrightarrow 31{u_1} = 31 \Leftrightarrow {u_1} = 1\)

Vậy ta có cấp số nhân là: \(1, 2, 4, 8, 16, 32\).     

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan