Bài 4 trang 17 SGK Đại số và Giải tích 11

Bình chọn:
3.5 trên 35 phiếu

Giải bài 4 trang 17 SGK Đại số và Giải tích 11. Chứng minh rằng

Đề bài

Chứng minh rằng \(sin2(x + kπ) = sin 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị hàm số \(y = sin2x\).

Phương pháp giải - Xem chi tiết

Dựa vào tính tuần hoàn và chu kì của hàm số \(y = \sin x\): Hàm \(y = \sin x\) là hàm tuần hoàn với chu kì \(2\pi\).

Lời giải chi tiết

Hàm \(y = \sin x\) là hàm tuần hoàn với chu kì \(2\pi\) nên ta có: 

\(\sin 2\left( {x + k\pi } \right) = \sin \left( {2x + k2\pi } \right) = \sin 2x\,\,\forall k \in Z\)

Ta có:

\(\begin{array}{l}f\left( x \right) = \sin 2x\\\Rightarrow f\left( {x + \pi } \right) = \sin 2\left( {x + \pi } \right) \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sin \left( {2x + k2\pi } \right) = \sin 2x = f\left( x \right)\end{array}\)

\( \Rightarrow \) Hàm số \(y=sin2x\) tuần là hàm tuần hoàn với chu kì \(\pi\).

Xét hàm số \(y = \sin 2x\) trên đoạn \(\left[ {0;\pi } \right]\).

Ta lấy các điểm đặc biệt như sau:

Từ đó ta có đồ thị hàm số \(y = \sin 2x\) trên đoạn \(\left[ {0;\pi } \right]\) là:

Do hàm số \(y = \sin 2x\) tuần hoàn với chu kì \(\pi \) nên ta có đồ thị là:

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Hàm số lượng giác

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng