Bài 1 trang 17 SGK Đại số và Giải tích 11

Bình chọn:
4.5 trên 74 phiếu

Giải bài 1 trang 17 SGK Đại số và Giải tích 11. Hãy xác định các giá trị của x trên đoạn

Đề bài

Bài 1. Hãy xác định các giá trị của \(x\) trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = tanx\) ;

a) Nhận giá trị bằng \(0\) ;

b) Nhận giá trị bằng \(1\) ;  

c) Nhận giá trị dương ;

d) Nhận giá trị âm.  

Phương pháp giải - Xem chi tiết

a) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) đồ thị hàm số cắt trục hoành tại những điểm nào?

b) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) đồ thị hàm số cắt đường thẳng \(y=1\) tại những điểm nào?

c) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) có những khoảng nào mà đồ thị hàm số nằm phía trên trục hoành.

d) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) có những khoảng nào mà đồ thị hàm số nằm phía dưới trục hoành.

Lời giải chi tiết

a) Trục hoành cắt đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(0\), đó là \(x = - π; x = 0 ; x = π\).

b) Đường thẳng \(y = 1\) cắt đoạn đồ thị \(y = tanx\) (ứng với \(x\in\)\(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ \({\pi  \over 4};{\pi  \over 4} \pm \pi \) . Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(1\), đó là \(x =  - {{3\pi } \over 4};\,\,x = {\pi  \over 4};\,\,x = {{5\pi } \over 4}\).

c) Phần phía trên trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng \(\left( { - \pi ; - {\pi  \over 2}} \right)\); \(\left( {0;{\pi  \over 2}} \right)\); \(\left( {\pi ;{{3\pi } \over 2}} \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị dương là \(x \in \left( { - \pi ; - {\pi  \over 2}} \right) \cup \left( {0;{\pi  \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).

d) Phần phía dưới trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng \(\left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị âm là \(x \in \left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Hàm số lượng giác

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu