Bài 4 trang 122 SGK Đại số và Giải tích 11

Bình chọn:
4.1 trên 20 phiếu

Giải bài 4 trang 122 SGK Đại số và Giải tích 11. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng 1.

Đề bài

Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng \(1\). Nó tô màu xám các hình vuông nhỏ được đánh dấu \(1, 2, 3, ..., n, ...\) trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (h.51)

Giả sử quy trình tô màu của Mickey có thể tiến ra vô hạn.

a) Gọi \(u_n\) là diện tích của hình vuông màu xám thứ \(n\). Tính \(u_1, u_2, u_3\) và \(u_n\).

b) Tính \(\lim S_n\) với \(S_n= {u_{1}} + {u_{2}} + {u_{3}} + ... + {u_{n}}\)

Phương pháp giải - Xem chi tiết

a) Tính diện tích của hình vuông \(S=a^2\) với \(a\) là cạnh của hình vuông.

b) Sử dụng công thức tổng của cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\,\,\left( {\left| q \right| < 1} \right)\).

Lời giải chi tiết

a) Hình vuông thứ nhất có cạnh bằng \(\frac{1}{2}\) nên \({u_1} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\).

Hình vuông thứ hai có cạnh bằng \(\frac{1}{4}\) nên \({u_2} = {\left( {{1 \over 4}} \right)^2} = {1 \over {{4^2}}}\).

Hình vuông thứ ba có cạnh bằng \(\frac{1}{8}\) nên  \({u_3} = {\left( {{1 \over 8}} \right)^2} = {1 \over {{4^3}}}\)

Tương tự, ta có \(u_n=\frac{1}{4^{n}}\)

b) Dãy số \((u_n)\) là một cặp số nhân lùi vô hạn với  \(u_1=\frac{1}{4}\) và  \(q = \frac{1}{4}\). Do đó

\(\lim S_n=\frac{u_{1}}{1-q}= \frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan