 Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                                                
                            Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                         Bài 1. Giới hạn của dãy số
                                                        Bài 1. Giới hạn của dãy số
                                                    Bài 3 trang 121 SGK Đại số và Giải tích 11>
Tìm giới hạn sau:
Video hướng dẫn giải
Tìm giới hạn sau:
LG a
\(\lim \dfrac{6n - 1}{3n +2}\)
Phương pháp giải:
Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n.
Lời giải chi tiết:
Đặt \(I= \lim \dfrac{{6n - 1}}{{3n + 2}} \) \(= \lim \dfrac{{n\left( {6 - \dfrac{1}{n}} \right)}}{{n\left( {3 + \dfrac{2}{n}} \right)}}\)\( = \lim \dfrac{{6 - \dfrac{1}{n}}}{{3 + \dfrac{2}{n}}} \)
Vì khi \(n \to \infty \) thì \({{\lim \left( {\dfrac{1}{n}} \right)}}=0\) nên \({{\lim \left( {6 - \dfrac{1}{n}} \right)}}=6\) và \({{\lim \left( {3 + \dfrac{2}{n}} \right)}} = 3\)
Do đó \( I= \dfrac{\lim \left({6 - \dfrac{1}{n}}\right) }{\lim \left({3 + \dfrac{2}{n}}\right)} \) \(= \dfrac{{6 }}{{3}} = 2\)
LG b
\(\lim \dfrac{3n^{2}+n-5}{2n^{2}+1}\)
Lời giải chi tiết:
Đặt \(I = \lim \dfrac{{3{n^2} + n - 5}}{{2{n^2} + 1}} \) \(= \lim \dfrac{{{n^2}\left( {3 + \dfrac{1}{n} - \dfrac{5}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \dfrac{1}{{{n^2}}}} \right)}} \) \(= \lim \dfrac{{3 + \dfrac{1}{n} - \dfrac{5}{{{n^2}}}}}{{2 + \dfrac{1}{{{n^2}}}}} \)
Vì khi \(n \to \infty \) thì \({{\lim \left( {\dfrac{1}{n}} \right)}}=0\) nên \(= \lim \left( {3 + \dfrac{1}{n} - \dfrac{5}{{n^2}}} \right) = 3\) và \(\lim \left( {2 + \frac{1}{{{n^2}}}} \right) = 2{\rm{ }}\)
Do đó \(I = \dfrac{3}{2} \)
LG c
\(\lim \dfrac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\);
Phương pháp giải:
Chia cả tử và mẫu cho \(4^n\) và sử dụng giới hạn \(\lim {q^n} = 0\left( {\left| q \right| < 1} \right)\)
Lời giải chi tiết:
Chia cả tử và mẫu của phân thức cho \(4^n\) ta được:
\(\lim \dfrac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\) \(= \lim \dfrac{{\left( {{3 \over 4}} \right)^n}+5}{1+{\left( {{1 \over 2}} \right)^n}}\) \(=\dfrac{0+5}{1+0}=\dfrac{5}{1}\) \(= 5\).
LG d
\(\lim\dfrac{\sqrt{9n^{2}-n+1}}{4n -2}\)
Lời giải chi tiết:
\(\lim \dfrac{\sqrt{9n^{2}-n+1}}{4n -2}\) = \(\lim \dfrac{\sqrt{{n^2}\left( {9 - {1 \over n} + {1 \over {{n^2}}}} \right)}}{n(4-\dfrac{2}{n})}\)= \(\lim \dfrac{\sqrt{9-\dfrac{1}{n}+\dfrac{1}{n^{2}}}}{4-\dfrac{2}{n}}\) =\(\dfrac{\sqrt{9}}{4}\)= \(\dfrac{3}{4}\).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            