Bài 2 trang 121 SGK Đại số và Giải tích 11

Bình chọn:
3.5 trên 47 phiếu

Giải bài 2 trang 121 SGK Đại số và Giải tích 11. Chứng minh rằng lim ...

Đề bài

Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \dfrac{1}{n^{3}}\) với mọi \(n\). Chứng minh rằng \(\lim u_n=1\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa giới hạn 0, xem tại đây.

Lời giải chi tiết

Vì \(\lim \dfrac{1}{{{n^3}}} = 0\) nên theo định nghĩa 1 thì

\(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn một số dương \(A\) bé tùy ý, kể từ một số hạng nào đó trở đi.

(\(\dfrac{1}{{{n^3}}} < A \Leftrightarrow {n^3} > \dfrac{1}{A} \Rightarrow n > \sqrt[3]{{\dfrac{1}{A}}}\), nghĩa là từ số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\) thì \(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn \(A\))

Mà \(\left| {{u_n} - 1} \right| < \dfrac{1}{{{n^3}}}\) nên \( \left| {{u_n} - 1} \right|\) luôn nhỏ hơn một số dương \(A\) bé tùy ý kể từ một số hạng nào đó trở đi

(số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\))

Theo định nghĩa dãy số có giới hạn \(0\) thì \(\lim \left( {{u_n} - 1} \right) = 0\)

\( \Rightarrow \lim {u_n} = 1\). (đpcm)

Cách khác:

Các em có thể sử dụng định lý sau:

Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\). Nếu có \(\left| {{u_n}} \right| \le {v_n}\) và \(\lim {v_n} = 0\) thì \(\lim {u_n} = 0\).

Cụ thể:

Vì \(\left| {{u_n} - 1} \right| < \dfrac{1}{{{n^3}}}\) và \(\lim \dfrac{1}{{{n^3}}} = 0\) nên \(\lim \left( {{u_n} - 1} \right) = 0 \Leftrightarrow \lim {u_n} = 1\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Giới hạn của dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay