
1. Kiến thức cần nhớ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\). Khi đó:
- Hệ số góc của tiếp tuyến tại điểm \({x_0}\) là:
\(k = f'\left( {{x_0}} \right)\)
- Phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
2. Một số dạng toán thường gặp
Dạng 1: Tiếp tuyến tại điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Cho hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\).
Phương pháp:
- Bước 1: Tính đạo hàm \(f'\left( x \right)\) và tìm hệ số góc của tiếp tuyến \(k = f'\left( {{x_0}} \right)\).
- Bước 2: Viết phương trình tiếp tuyến tại \(M\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Dạng 2: Tiếp tuyến có hệ số góc \(k\) cho trước.
Phương pháp:
- Bước 1: Gọi \(\left( \Delta \right)\) là tiếp tuyến cần tìm có hệ số góc \(k\).
- Bước 2: Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Khi đó \({x_0}\) thỏa mãn \(f'\left( {{x_0}} \right) = k\).
- Bước 3: Giải phương trình trên tìm \({x_0} \Rightarrow {y_0} = f\left( {{x_0}} \right)\).
- Bước 4: Phương trình tiếp tuyến cần tìm là: \(y = k\left( {x - {x_0}} \right) + {y_0}\).
Dạng 3: Tiếp tuyến đi qua một điểm.
Cho đồ thị hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(A\left( {a;b} \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) biết tiếp tuyến đi qua \(A\).
Phương pháp:
- Bước 1: Gọi \(\Delta \) là đường thẳng qua \(A\) và có hệ số góc \(k\). Khi đó \(\Delta :y = k\left( {x - a} \right) + b\)
- Bước 2: Để \(\Delta \) là tiếp tuyến của \(\left( C \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = k\left( {x - a} \right) + b\\f'\left( x \right) = k\end{array} \right.\) có nghiệm.
- Bước 3: Giải hệ phương trình trên tìm \(k\), thay vào ta được phương trình tiếp tuyến cần tìm.
- Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) là \(k = f'\left( {{x_0}} \right)\).
- Cho đường thẳng \(d:y = {k_d}x + a\).
+) \(\Delta \bot d \Rightarrow {k_\Delta }.{k_d} = - 1 \Leftrightarrow {k_\Delta } = - \dfrac{1}{{{k_d}}}\)
+) \(\Delta //d \Rightarrow {k_\Delta } = {k_d}\)
+) \(\left( {\Delta ,d} \right) = \alpha \Rightarrow \tan \alpha = \left| {\dfrac{{{k_\Delta } - {k_d}}}{{1 + {k_\Delta }.{k_d}}}} \right|\)
+) \(\left( {\Delta ,Ox} \right) = \alpha \Rightarrow {k_\Delta } = \pm \tan \alpha \)
Giải bài 5 trang 163 SGK Đại số và Giải tích 11. Cho y =
Giải bài 4 trang 163 SGK Đại số và Giải tích 11. Tìm đạo hàm của các hàm số sau:
Giải bài 3 trang 163 SGK Đại số và Giải tích 11. Tìm đạo hàm của các hàm số sau:
Giải bài 2 trang 163 SGK Đại số và Giải tích 11. Tìm đạo hàm của các hàm số sau:
Giải bài 1 trang 162 SGK Đại số và Giải tích 11. Bằng định nghĩa, tìm đạo hàm của các hàm số sau:
Giải câu hỏi 6 trang 161 SGK Đại số và Giải tích 11. Hàm số sau là hàm hợp của hàm số nào?...
Giải câu hỏi 5 trang 160 SGK Đại số và Giải tích 11. Hãy chứng minh các công thức trên và lấy ví dụ minh họa....
Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số...
Có thể trả lời ngay được không, nếu yêu cầu tính đạo hàm của hàm số....
Chứng minh khẳng định trong nhận xét trên...
Dùng định nghĩa tính đạo hàm của hàm số...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: