 Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                                                
                            Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                         Bài 2. Quy tắc tính đạo hàm
                                                        Bài 2. Quy tắc tính đạo hàm
                                                    Câu hỏi 1 trang 157 SGK Đại số và Giải tích 11>
Dùng định nghĩa tính đạo hàm của hàm số...
Đề bài
Dùng định nghĩa tính đạo hàm của hàm số \(y = {x^{3}}\) tại điểm \(x\) tùy ý.
Dự đoán đạo hàm của hàm số \(y = {x^{100}}\) tại điểm \(x\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Tính \(Δy\).
- Tính \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}}\) suy ra đạo hàm.
Lời giải chi tiết
- Giả sử \(Δx\) là số gia của đối số tại \(\x_0) bất kỳ. Ta có:
\(\eqalign{
 & \Delta y = f({x_0} + \Delta x) - f({x_0}) \cr 
 & = {({x_0} + \Delta x)^3} - {x_0}^3 = 3{x_0}^2\Delta x + 3{x_0}{(\Delta x)^2} + {(\Delta x)^3} \cr 
 & \Rightarrow y'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} (3{x_0}^2 + 3{x_0}\Delta x + {(\Delta x)^2}) = 3{x_0}^2 \cr} \)
- Dự đoán đạo hàm của \(y = {x^{100}}\) tại điểm \(x\) là \(y = 100{x^{99}}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            