Bài 4 trang 100 SBT toán 7 tập 1


Giải bài 4 trang 100 sách bài tập toán 7 tập 1. Vẽ đường tròn tâm O bán kính 2cm...

Đề bài

a) Vẽ đường tròn tâm \(O\) bán kính \(2\,cm.\)

b) Vẽ góc \(AOB\) có số đo bằng \(60^\circ \). Hai điểm \(A, B\) nằm trên đường tròn \((O; 2cm)\).

c) Vẽ góc \(BOC\) có số đo bằng \(60^\circ \). Điểm \(C\) thuộc đường tròn \((O; 2cm).\)

d) Vẽ các tia \(OA’, OB’, OC’\) lần lượt là tia đối của các tia \(OA, OB, OC.\) Các điểm \(A’; B’; C’\)  thuộc đường tròn \((O; 2cm).\)

e) Viết tên năm cặp góc đối đỉnh.

g) Viết tên năm cặp góc bằng nhau mà không đối đỉnh.

Phương pháp giải - Xem chi tiết

- Định nghĩa: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

- Tính chất: Hai góc đối đỉnh thì bằng nhau.

- Tổng hai góc kề bù bằng \(180^o\). 

Lời giải chi tiết

a)

b)

c)

d)

 

e) Tên \(5\) cặp góc đối đỉnh:

\(\widehat {AOB}\) và \(\widehat {A'OB'}\); \(\widehat {BOC}\) và \(\widehat {B'OC'}\);

\(\widehat {AOC}\) và \(\widehat {A'OC'}\); \(\widehat {AOB'}\) và \(\widehat {BOA'}\);

\(\widehat {AOC'}\) và \(\widehat {A'OC}\)

g) Vì \(\widehat {AOB} + \widehat {BOC} + \widehat {COA'} = 180^\circ \) (kề bù)

\( \Rightarrow \widehat {COA'} = 180^\circ  - 60^\circ  - 60^\circ  = 60^\circ \)

Tên \(5\) cặp góc bằng nhau không đối đỉnh:

\(\eqalign{
& \widehat {AOB} = \widehat {BOC} = 60^\circ ;\cr&\widehat {BOC} = \widehat {COA'} = 60^\circ \cr 
& \widehat {AOB} = \widehat {COA'} = 60^\circ ;\cr 
& \widehat {AO{\rm{A}}'} = \widehat {BOB'} = 180^\circ \cr} \)

\(\widehat {A'OB'} = \widehat {B'OC'} = 60^\circ \) (vì \(\widehat {A'OB'} = \widehat {AOB} = 60^\circ \) (hai góc đối đỉnh và \(\widehat {B'OC'} = \widehat {BOC} = 60^\circ \) (hai góc đối đỉnh)) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 29 phiếu

Các bài liên quan: - Bài 1. Hai góc đối đỉnh

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài