Bài 16 trang 203 SBT Hình học 10


Giải bài 16 trang 203 sách bài tập Hình học 10. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của có có phương trình là...

Đề bài

Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của có có phương trình là \({\left( {x - \frac{5}{2}} \right)^2} + {y^2} = \frac{{25}}{4}\) . Tìm tọa độ các đỉnh còn lại của hình chữ nhật.

Lời giải chi tiết

Đường tròn (T) có tâm \(I\left( {\frac{5}{2};0} \right)\) và bán kính \(R = \frac{5}{2}\) .

\(\overrightarrow {OB}  = 2\overrightarrow {OI}  = \left( {5;0} \right)\) suy ra B(5 ; 0). Đặt A(x ; y) ta có hệ phương trình

\(\left\{ \begin{array}{l}{\left( {x - \frac{5}{2}} \right)^2} + {y^2} = \frac{{25}}{4}\\\sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {5 - x} \right)}^2} + {y^2}}  = 12\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}{y^2} = \frac{{25}}{4} - {\left( {x - \frac{5}{2}} \right)^2}\\\left[ {{x^2} + 5x - {x^2}} \right]\left[ {{{\left( {5 - x} \right)}^2} + 5x - {x^2}} \right] = 144\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 5x - {x^2}\\\left[ \begin{array}{l}x = \frac{9}{5}\\y = \frac{{16}}{5}\end{array} \right.\end{array} \right.\)

Vậy ta được \(A\left( {\frac{9}{5};\frac{{12}}{5}} \right)\) , \(C\left( {\frac{6}{5};\frac{{ - 12}}{5}} \right)\)

Hoặc \(A\left( {\frac{9}{5};\frac{{ - 12}}{5}} \right)\) , \(C\left( {\frac{6}{5};\frac{{12}}{5}} \right)\) .

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - BÀI TẬP ÔN TẬP CUỐI NĂM

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài