Bài 1.49 trang 16 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.49 trang 16 sách bài tập Đại số và Giải tích 11 Nâng cao. Hãy xác định các giá trị của m để phương trình sau có nghiệm ...

Đề bài

Hãy xác định các giá trị của m để phương trình sau có nghiệm \(x \in \left( {0;{\pi  \over {12}}} \right)\)

\(\cos 4x = {\cos ^2}3x + m{\sin ^2}x\)

Lời giải chi tiết

Ta có:

\(\eqalign{
 \cos 6x &= \cos \left( {2x + 4x} \right) \cr&= \cos 2x\cos 4x - \sin 2x\sin 4x \cr 
& = \cos 2x\left( 2{{{\cos }^2}2x - 1} \right) - 2{\sin ^2}2x\cos 2x \cr 
&  = 2{\cos ^3}2x - \cos 2x - 2\left( {1 - {{\cos }^2}2x} \right)\cos 2x \cr&= 4{\cos ^3}2x - 3\cos 2x \cr} \)

Áp dụng kết quả đó, phương trình đã cho có thể biến đổi như sau:

\(\eqalign{& \cos 4x = {\cos ^2}3x + m{\sin ^2}x \cr&\Leftrightarrow \cos 4x = {{1 + \cos 6x} \over 2} + {{m\left( {1 - \cos 2x} \right)} \over 2} \cr 
& \Leftrightarrow 2\left( {2{{\cos }^2}2x - 1} \right) = 1 + \cos 6x + m - m\cos 2x \cr 
& \Leftrightarrow 4{\cos ^2}2x - 2 = 1 + 4{\cos ^3}2x - 3\cos 2x + m \cr&\;\;\;= m\cos 2x \cr 
& \Leftrightarrow 4{\cos ^3}2x - 4{\cos ^2}2x - \left( {m + 3} \right)\cos 2x + m + 3 \cr&\;\;\;\;= 0 \cr} \)

\( \Leftrightarrow \left( {\cos 2x - 1} \right)\left[ {4{{\cos }^2}2x - \left( {m + 3} \right)} \right] = 0 \)

\(\Leftrightarrow \left[ \matrix{
\cos 2x = 1 \hfill \cr 
4{\cos ^2}2x = \left( {m + 3} \right) \hfill \cr} \right.\)

Nếu phương trình có nghiệm \(x \in \left( {0;{\pi  \over {12}}} \right)\) thì \(2x \in \left( {0;{\pi  \over 6}} \right)\),

Suy ra \({{\sqrt 3 } \over 2} < \cos 2x < 1\) và \({3 \over 4} < {\cos ^2}2x < 1\), nghĩa là \(3 < m + 3 < 4\) hay \(0 < m < 1\)

Ngược lại, dễ thấy rằng nếu \(0 < m < 1\) thì phương trình có nghiệm \(x \in \left( {0;{\pi  \over {12}}} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài