Bài 1.33 trang 13 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.33 trang 13 sách bài tập Đại số và Giải tích 11 Nâng cao. Tìm các giá trị x thuộc ...

Đề bài

Tìm các giá trị x thuộc \(\left( { - {{3\pi } \over 4};\pi } \right)\) thỏa mãn phương trình sau với mọi m:

\({m^2}\sin x - m{\sin ^2}x - {m^2}\cos x + m{\cos ^2}x \)\(= \cos x - \sin x\)

Lời giải chi tiết

Viết phương trình đã cho dưới dạng

\(\left( {\sin x - \cos x} \right){m^2} + \left( {{{\cos }^2}x - {{\sin }^2}x} \right)m \)

\(+ \left( {\sin x - \cos x} \right) = 0.\)

Để đẳng thức này đúng với mọi m thì ta phải có

\(\left\{ \matrix{
\sin x - \cos x = 0 \hfill \cr 
{\cos ^2}x - {\sin ^2}x = 0 \hfill \cr} \right.\)

\( \Leftrightarrow \) \(\sin x - \cos x = 0\)

\(\begin{array}{l}
\Leftrightarrow \sin x = \cos x\\
\Leftrightarrow \tan x = 1\\
\Leftrightarrow x = \frac{\pi }{4} + k\pi
\end{array}\)

Trong khoảng \(\left( { - {{3\pi } \over 4};\pi } \right)\) có đúng một giá trị \(x = {\pi  \over 4}\) thỏa mãn phương trình đã cho với mọi \(m \in R\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí