Bài 1.37 trang 14 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.37 trang 14 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải các phương trình sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(2{\sin ^3}x + 4{\cos ^3}x = 3\sin x\)

Lời giải chi tiết:

Những giá trị của \(x\) mà \(\cos x = 0\) thì \(\sin x =  \pm 1\) nên không có nghiệm của phương trình đã cho .

Với \(\cos x \ne 0\) , chia hai vế của nó cho \({\cos ^3}x\) , ta được

\(\begin{array}{l}
2.\frac{{{{\sin }^3}x}}{{{{\cos }^3}x}} + 4 = 3.\frac{{\sin x}}{{{{\cos }^3}x}}\\
2{\tan ^3}x + 4 = 3.\frac{{\sin x}}{{\cos x}}.\frac{1}{{{{\cos }^2}x}}\\
\Leftrightarrow 2{\tan ^3}x + 4 = 3\tan x\left( {1 + {{\tan }^2}x} \right)\\
\Leftrightarrow {\tan ^3}x + 3\tan x - 4 = 0\\
\Leftrightarrow \left( {\tan x - 1} \right)\left( {{{\tan }^2}x + \tan x + 4} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan x - 1 = 0\\
{\tan ^2}x + \tan x + 4 = 0\left( {VN} \right)
\end{array} \right.\\
\Leftrightarrow \tan x = 1\\
\Leftrightarrow x = \frac{\pi }{4} + k\pi
\end{array}\)

LG b

\(3{\sin ^2}{x \over 2}\cos \left( {{{3\pi } \over 2} + {x \over 2}} \right) + 3{\sin ^2}{x \over 2}\cos {x \over 2} \)

\(= \sin {x \over 2}{\cos ^2}{x \over 2} + {\sin ^2}\left( {{x \over 2} + {\pi  \over 2}} \right)\cos {x \over 2}\)

Lời giải chi tiết:

Ta có:

\(\cos \left( {{{3\pi } \over 2} + {x \over 2}} \right) = \sin {x \over 2}\)

\(\sin \left( {{\pi  \over 2} + {x \over 2}} \right) = \cos {x \over 2}\)

Phương trình đã cho trở thành:

\(3{\sin ^3}{x \over 2} + 3{\sin ^2}{x \over 2}\cos {x \over 2}\)\( - \sin {x \over 2}{\cos ^2}{x \over 2} - {\cos ^3}{x \over 2} = 0(*)\)

Với điều kiện \(\cos {x \over 2} \ne 0\) , chia hai vế của (*) cho \({\cos ^3}{x \over 2}\) thì được phương trình

\(3{\tan ^3}{x \over 2} + 3{\tan ^2}{x \over 2} - \tan {x \over 2} - 1 = 0\)

\(\begin{array}{l}
\Leftrightarrow \left( {3{{\tan }^3}\frac{x}{2} - \tan \frac{x}{2}} \right) + \left( {3{{\tan }^2}\frac{x}{2} - 1} \right) = 0\\
\Leftrightarrow \tan \frac{x}{2}\left( {3{{\tan }^2}\frac{x}{2} - 1} \right) + \left( {3{{\tan }^2}\frac{x}{2} - 1} \right) = 0
\end{array}\)

\( \Leftrightarrow \) \(\left( {\tan {x \over 2} + 1} \right)\left( {3{{\tan }^2}{x \over 2} - 1} \right) = 0\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\tan \frac{x}{2} + 1 = 0\\
3{\tan ^2}\frac{x}{2} - 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\tan \frac{x}{2} = - 1\\
\tan \frac{x}{2} = \pm \frac{1}{{\sqrt 3 }}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{x}{2} = - \frac{\pi }{4} + k\pi \\
\frac{x}{2} = \pm \frac{\pi }{6} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{2} + k2\pi \\
x = \pm \frac{\pi }{3} + k2\pi
\end{array} \right.
\end{array}\)

Vậy phương trình có nghiệm \(x =  - {\pi  \over 2} + 2k\pi \) và \(x =  \pm {\pi  \over 3} + 2k\pi \).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài