Bài 1.35 trang 13 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.35 trang 13 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải phương trình...

Đề bài

Giải phương trình:

\(12\cos x + 5\sin x \)\(+ {5 \over {12\cos x + 5\sin x + 14}} + 8 = 0\)

Lời giải chi tiết

Đặt \(y = 12\cos x + 5\sin x + 14\), ta có phương trình \(y + {5 \over y} - 6 = 0\).

\( \Leftrightarrow {y^2} - 6y + 5 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}
y = 1\\
y = 5
\end{array} \right.\)

Do đó

\(\left[ \matrix{
12\cos x + 5\sin x + 14 = 1 \hfill \cr 
12\cos x + 5\sin x + 14 = 5 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
12\cos x + 5\sin x = - 13\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr 
12\cos x + 5\sin x = - 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)

Chia hai vế của phương trình (1) và (2) cho \(13\left( {13 = \sqrt {{{12}^2} + {5^2}} } \right)\), gọi \(\alpha \) là số thỏa mãn \(\cos \alpha  = {{12} \over {13}}\) và \(\sin \alpha  = {5 \over {13}}\), ta có :

(1) \( \Leftrightarrow \cos (x - \alpha ) =  - 1\)

\( \Leftrightarrow x - \alpha  = \pi  + k2\pi \)

\(\Leftrightarrow x = \alpha  + \pi  + k2\pi \)

(2) \( \Leftrightarrow \cos (x - \alpha ) =  - {9 \over {13}}\)

\(\Leftrightarrow x = \alpha  \pm \arccos \left( { - {9 \over {13}}} \right) + k2\pi \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí