Bài 1.27 trang 11 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.27 trang 11 sách bài tập Đại số và Giải tích 11 Nâng cao. Chọn phương án đúng trong bốn phương án đã cho trong mỗi câu sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Chọn phương án đúng trong  bốn phương án đã cho trong mỗi câu sau:

LG a

\(\sqrt 3 \sin {15^o} + \cos {15^o} - \sqrt 2 \)  bằng:

(A) \(\sqrt 3 \)                           (B) \(\sqrt 2 \)

(C) 1                              (D) 0

Lời giải chi tiết:

\(\begin{array}{l}
\sqrt 3 \sin {15^0} + \cos {15^0} - \sqrt 2 \\
= 2\left( {\frac{{\sqrt 3 }}{2}\sin {{15}^0} + \frac{1}{2}\cos {{15}^0}} \right) - \sqrt 2 \\
= 2\left( {\cos {{30}^0}\sin {{15}^0} + \sin {{30}^0}\cos {{15}^0}} \right) - \sqrt 2 \\
= 2\sin \left( {{{15}^0} + {{30}^0}} \right) - \sqrt 2 \\
= 2\sin {45^0} - \sqrt 2 \\
= 2.\frac{{\sqrt 2 }}{2} - \sqrt 2 \\
= 0
\end{array}\)

Chọn D.

LG b

\({1 \over {\sin {\pi  \over 9}}} - {1 \over {\sqrt 3 \cos {\pi  \over 9}}}\) bằng:

(A) \(\sqrt 3 \)                           (B) \({2 \over {\sqrt 3 }}\)

(C) \({4 \over {\sqrt 3 }}\)                             (D) \( - 2\sqrt 3 \)

Lời giải chi tiết:

\(\begin{array}{l}
\frac{1}{{\sin \frac{\pi }{9}}} - \frac{1}{{\sqrt 3 \cos \frac{\pi }{9}}}\\
= \frac{{\sqrt 3 \cos \frac{\pi }{9} - \sin \frac{\pi }{9}}}{{\sqrt 3 \cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\frac{{\sqrt 3 }}{2}\cos \frac{\pi }{9} - \frac{1}{2}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.2\cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\sin \frac{\pi }{3}\cos \frac{\pi }{9} - \cos \frac{\pi }{3}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{{2\sin \frac{{2\pi }}{9}}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{4}{{\sqrt 3 }}
\end{array}\)

Chọn C.

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài