Bài 1.26 trang 11 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.26 trang 11 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải các phương trình sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

 \(3{\cot ^2}\left( {x + {\pi  \over 5}} \right) = 1\)

Lời giải chi tiết:

\(\begin{array}{l}
3{\cot ^2}\left( {x + \frac{\pi }{5}} \right) = 1\\
\Leftrightarrow {\cot ^2}\left( {x + \frac{\pi }{5}} \right) = \frac{1}{3}\\
\Leftrightarrow \left[ \begin{array}{l}
\cot \left( {x + \frac{\pi }{5}} \right) = \frac{1}{{\sqrt 3 }}\\
\cot \left( {x + \frac{\pi }{5}} \right) = - \frac{1}{{\sqrt 3 }}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + \frac{\pi }{5} = \frac{\pi }{3} + k\pi \\
x + \frac{\pi }{5} = - \frac{\pi }{3} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{2\pi }}{{15}} + k\pi \\
x = - \frac{{8\pi }}{{15}} + k\pi
\end{array} \right.
\end{array}\)

Vậy phương trình có nghiệm \(x = {{2\pi } \over {15}} + k\pi ,x = -{{8\pi } \over {15}} + k\pi \).

LG b

 \({\tan ^2}\left( {2x - {\pi  \over 4}} \right) = 3\)

Lời giải chi tiết:

\(\begin{array}{l}
{\tan ^2}\left( {2x - \frac{\pi }{4}} \right) = 3\\
\Leftrightarrow \left[ \begin{array}{l}
\tan \left( {2x - \frac{\pi }{4}} \right) = \sqrt 3 \\
\tan \left( {2x - \frac{\pi }{4}} \right) = - \sqrt 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \frac{\pi }{4} = \frac{\pi }{3} + k\pi \\
2x - \frac{\pi }{4} = - \frac{\pi }{3} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{{7\pi }}{{12}} + k\pi \\
2x = - \frac{\pi }{{12}} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\\
x = - \frac{\pi }{{24}} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)

Vậy \(x = {{7\pi } \over {24}} + k{\pi  \over 2},x =  - {\pi  \over {24}} + k{\pi  \over 2}\)

LG c

\(7\tan x - 4\cot x = 12\)

Lời giải chi tiết:

ĐK:

\(\begin{array}{l}
\left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right.\\
\Leftrightarrow \sin x\cos x \ne 0\\
\Leftrightarrow 2\sin x\cos x \ne 0\\
\Leftrightarrow \sin 2x \ne 0\\
\Leftrightarrow 2x \ne k\pi \\
\Leftrightarrow x \ne \frac{{k\pi }}{2}
\end{array}\)

Khi đó, 

\(\begin{array}{l}
PT \Leftrightarrow 7\tan x - \frac{4}{{\tan x}} = 12\\
\Leftrightarrow 7{\tan ^2}x - 12\tan x - 4 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\tan x = 2\\
\tan x = - \frac{2}{7}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arctan 2 + k\pi \\
x = \arctan \left( { - \frac{2}{7}} \right) + k\pi
\end{array} \right.(TM)
\end{array}\)

Vậy \(x = \arctan 2   + k\pi ,\) \(x = \arctan \left( { - \frac{2}{7}} \right)  + k\pi\)

LG d

\({\cot ^2}x + \left( {\sqrt 3  - 1} \right)\cot x - \sqrt 3  = 0\)

Lời giải chi tiết:

\(\begin{array}{l}
PT \Leftrightarrow {\cot ^2}x + \sqrt 3 \cot x - \cot x - \sqrt 3 = 0\\
\Leftrightarrow \cot x\left( {\cot x + \sqrt 3 } \right) - \left( {\cot x + \sqrt 3 } \right) = 0\\
\Leftrightarrow \left( {\cot x + \sqrt 3 } \right)\left( {\cot x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cot x + \sqrt 3 = 0\\
\cot x - 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cot x = - \sqrt 3 \\
\cot x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{6} + k\pi \\
x = \frac{\pi }{4} + k\pi
\end{array} \right.
\end{array}\)

Vậy \(x = {\pi  \over 4} + k\pi ,x =  - {\pi  \over 6} + k\pi \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.