Bài 1.30 trang 12 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.30 trang 12 sách bài tập Đại số và Giải tích 11 Nâng cao. Tính...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Biết \(\cos {{2\pi } \over 5} = {{\sqrt 5  - 1} \over 4}\) hãy đưa ra biểu thức \(\sin x + \sqrt {5 + 5\sqrt 5 } \cos x\) về dạng \(C\sin \left( {x + \alpha } \right)\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\cos \frac{{2\pi }}{5} = \frac{{\sqrt 5 - 1}}{4}\\
\Rightarrow {\tan ^2}\frac{{2\pi }}{5} = \frac{1}{{{{\cos }^2}\frac{{2\pi }}{5}}} - 1\\
= 1:{\left( {\frac{{\sqrt 5 - 1}}{4}} \right)^2} - 1\\
= 5 + 2\sqrt 5 \\
\Rightarrow \tan \frac{{2\pi }}{5} = \sqrt {5 + 2\sqrt 5 } \\
\Rightarrow \sin x + \sqrt {5 + 2\sqrt 5 } \cos x\\
= \sin x + \tan \frac{{2\pi }}{5}\cos x\\
= \frac{1}{{\cos \frac{{2\pi }}{5}}}\left( {\sin x\cos \frac{{2\pi }}{5} + \sin \frac{{2\pi }}{5}\cos x} \right)\\
= \frac{4}{{\sqrt 5 - 1}}\sin \left( {x + \frac{{2\pi }}{5}} \right)
\end{array}\)

LG b

Dùng máy tính cầm tay tính gần đúng C và \(\alpha \) nói trên.

Lời giải chi tiết:

\(C \approx 3,236067978,\alpha  \approx 1,256637061...\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài