
Đề bài
Cho tứ diện \(SABC\) có cạnh \(SA\) vuông góc với mặt phẳng \((ABC)\) và có tam giác \(ABC\) vuông tại \(B\). Trong mặt phẳng \((SAB)\) kẻ \(AM\) vuông góc với \(SB\) tại \(M\). Trên cạnh \(SC\) lấy điểm \(N\) sao cho \(\dfrac{SM}{SB}=\dfrac{SN}{SC}.\) Chứng minh rằng:
a) \(BC ⊥ (SAB)\) và \(AM ⊥ (SBC)\);
b) \(SB ⊥ AN\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Sử dụng kết quả của định lí:
Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
b) Chứng minh \(SB \bot \left( {AMN} \right)\).
Lời giải chi tiết
a) \(SA ⊥ (ABC) \Rightarrow SA ⊥ BC\) (1),
Tam giác \(ABC\) vuông tại \(B\) nên \(BC ⊥ AB\) (2)
Từ (1) và (2) suy ra \(BC ⊥ (SAB)\).
\(BC ⊥ (SAB)\) nên \(BC ⊥ AM\) (3)
\( AM ⊥ SB\) (giả thiết) (4)
Từ (3) và (4) suy ra \(AM ⊥ (SBC)\).
b) \(AM ⊥ (SBC)\) nên \(AM\bot SB\) (5)
\(\dfrac{SM}{SB}=\dfrac{SN}{SC}\) nên theo định lí ta lét ta có: \(MN// BC\)
\(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\)
Ta có:
\(\left\{ \begin{array}{l}
BC \bot SB\\
BC//MN
\end{array} \right. \Rightarrow MN \bot SB\) (6)
Từ (5) và (6) suy ra \(SB\bot (AMN)\) suy ra \(SB\bot AN\)
Nhận xét: Hình chóp trong các bài 4; 6; 7 thuộc loại hình chóp có một cạnh bên vuông góc với đáy (do đó nó có hai mặt bên vuông góc với đáy).
Loigiaihay.com
Cho điểm S không thuộc cùng mặt phẳng (α) có hình chiếu là điểm H. Với điểm M bất kì trên (α)...
Giải bài 6 trang 105 SGK Hình học 11. Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD)...
Trên mặt phẳng (α) cho hình bình hành ABCD. Gọi O là giao điểm của AC và BD...
Giải bài 4 trang 105 SGK Hình học 11. Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc...
Giải bài 3 trang 104 SGK Hình học 11. Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có SA=SB=SC=SD.Gọi O là giao điểm của AC và BD.
Giải bài 2 trang 104 SGK Hình học 11. Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung cạnh đáy BC
Giải bài 1 trang 104 SGK Hình học 11. Cho hai đường thẳng phân biệt a,b và mặt phẳng
Cho hai đường thẳng a và b song song với nhau. Một đường thẳng d vuông góc với a và b...
Muốn chứng minh đường thẳng d vuông góc với một mặt phẳng (α), người ta phải làm như thế nào?...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: