Bài 6 trang 105 SGK Hình học 11


Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh \(SB\) và \(SD\) sao cho \(\dfrac{SI}{SB}=\dfrac{SK}{SD}.\) Chứng minh:

a) \(BD\) vuông góc với \(SC\); 

b) \(IK\) vuông góc với mặt phẳng \((SAC)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Chứng minh \(BD \bot \left( {SAC} \right)\).

b) Chứng minh \(IK // BD\).

Lời giải chi tiết

a) \(ABCD\) là hình thoi nên \(AC\bot BD\)    (1)

Theo giả thiết: \(SA\bot (ABCD)\Rightarrow SA\bot BD\)        (2)

Từ (1) và (2) suy ra  \( BD ⊥ SC\) (Tính chất một đường vuông góc với 2 cạnh của một tam giác thì vuông góc với cả cạnh còn lại của tam giác ấy)

Cách khác:

Sử dụng định lí ba đường vuông góc:

Ta có: \(SA \bot \left( {ABCD} \right)\) \( \Rightarrow AC\) là hình chiếu của \(SC\) lên \((ABCD)\).

Mà \(BD \bot AC \Rightarrow BD \bot SC\)

b) Ta có: \(\dfrac{SI}{SB}=\dfrac{SK}{SD}\) theo định lí Ta-lét ta có \(IK//BD\)

Theo a) ta có: \(BD ⊥ (SAC) \Rightarrow IK ⊥ (SAC)\).

Loigiaihay.com


Bình chọn:
4.3 trên 27 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.