Bài 5 trang 105 SGK Hình học 11


Giải bài 5 trang 105 SGK Hình học 11. Trên mặt phẳng (α) cho hình bình hành ABCD. Gọi O là giao điểm của AC và BD...

Đề bài

Trên mặt phẳng \((α)\) cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). \(S\) là một điểm nằm ngoài mặt phẳng \((α)\) sao cho \(SA = SC, SB = SD\). Chứng minh rằng:

a) \(SO ⊥ (α)\);

b) Nếu trong mặt phẳng \((SAB)\) kẻ \(SH\) vuông góc với \(AB\) tại \(H\) thì \(AB\) vuông góc mặt phẳng \((SOH)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng kết quả của định lí:

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Lời giải chi tiết

a) \(SA = SC \Rightarrow SAC\) cân tại \(S\).

\(O\) là trung điểm của \(AC \Rightarrow SO\) là đường trung tuyến đồng thời là đường cao của tam giác cân nên \(SO\bot AC\)

Chứng minh tương tự ta có: \(SO\bot BD\)

Ta có: 

\(\left. \matrix{SO \bot BD \hfill \cr SO \bot AC \hfill \cr BD \cap AC = {\rm{\{ O\} }} \hfill \cr} \right\} \Rightarrow SO \bot (ABCD)\) hay \(SO ⊥ mp(α)\).

b) \(SO ⊥ (ABCD) \Rightarrow SO ⊥ AB\)

\(\left\{ \begin{array}{l}
SO \bot AB\\
SH \bot AB\\
SO \cap SH = S\\
SO,SH \subset \left( {SOH} \right)
\end{array} \right. \Rightarrow AB \bot \left( {SOH} \right)\)

Loigiaihay.com


Bình chọn:
4.4 trên 16 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài