Bài 3 trang 104 SGK Hình học 11

Bình chọn:
3.6 trên 9 phiếu

Giải bài 3 trang 104 SGK Hình học 11. Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có SA=SB=SC=SD.Gọi O là giao điểm của AC và BD.

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng:

a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\);

b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\).

Phương pháp giải - Xem chi tiết

Sử dụng kết quả của định lí:

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Lời giải chi tiết

a) Theo giả thiết \(SA=SC\) nên tam giác \(SAC\) cân tại \(S\) 

\(O\) là giao của hai đường chéo hình bình hành nên \(O\) là trung điểm của \(AC\) và \(BD\).

Do đó \(SO\) vừa là trung tuyến đồng thời là đường cao trong tam giác \(SAC\) hay \(SO\bot AC\)                     (1)

Chứng minh tương tự ta được: \(SO\bot BD\)           (2)

Từ (1) và (2) suy ra \(SO\bot (ABCD)\).

b)  \(ABCD\) là hình thoi nên \(AC\bot BD\)                 (3)

Từ (1) và (3) suy ra \(AC\bot (SBD)\)

Từ (2) và (3) suy ra \(BD\bot (SAC)\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan