Bài 3 trang 33 SGK Hình học 11


Trong mặt phẳng Oxy cho điểm I (1;1) và đường trong tâm I bán kính 2.

Đề bài

Trong mặt phẳng \(Oxy\) cho điểm \(I (1;1)\) và đường trong tâm \(I\) bán kính \(2\). Viết phương trình của đường tròn là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Phép quay tâm \(O\), góc quay \(45^0\) biến đường tròn tâm \(I\) bán kính \(R\) thành đường tròn tâm \(I_1\) bán kính \(R\), với \(I_1 = {Q_{\left( {O;{{45}^0}} \right)}}\left( I \right)\).

Phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính \(R\) thành đường tròn tâm \(I_2\); bán kính \(R_2\), với \(I_2 = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right);\,\,R_2 = \sqrt 2 R\).

Lời giải chi tiết

+ Gọi \(({I_1};{\rm{ }}{R_1}) = {\rm{ }}{Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( {I;{\rm{ }}R} \right)\) (Phép quay đường tròn tâm \(I,\) bán kính \(R\) qua tâm \(O\) một góc \(45^0).\)

\( \Rightarrow \left\{ \begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right)\\
{R_1} = R
\end{array} \right.\)

Xác định \(I_1\):

Ta có:

\(\begin{array}{l}
{I_1} = {Q_{\left( {O;{\rm{ }}45} \right)}}\;\left( I \right) \Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI\\
\widehat {IO{I_1}} = {45^o}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
O{I_1} = OI = \sqrt {{1^2} + {1^2}} = \sqrt 2 \\
\widehat {IO{I_1}} = {45^o} \Leftrightarrow {I_1} \in Oy
\end{array} \right.\\
\Rightarrow {I_1}\left( {0;\sqrt 2 } \right)
\end{array}\)

+ Gọi \(I_2\left( {x'';y''} \right) = {V_{\left( {O;\sqrt 2 } \right)}}\left( I_1 \right)\) ta có:

\(\overrightarrow {OI_2} = \sqrt 2\overrightarrow {OI_1} \)

\(\Leftrightarrow \left\{ \begin{array}{l}x'' = 2.0 = 0\\y'' = \sqrt 2.\sqrt 2 =2\end{array} \right.\)

\( \Rightarrow I''\left( {0;2 } \right)\)

Do đó phép vị tự tâm \(O\), tỉ số \(\sqrt{2}\) biến đường tròn tâm \(I_1\), bán kính R thành đường tròn tâm \(I_2\left( {0;2 } \right)\); bán kính \(R_2 = \sqrt 2 R = 2\sqrt 2 \).

Vậy phương trình đường tròn tâm \(I_2\), bán kính \(R_2\) là \({x^2} + {\left( {y - 2} \right)^2} = 8\).

Chú ý:

Cách khác để tìm \(I_1\) (chỉ dùng cho trắc nghiệm) như sau:

Gọi \(I_1(x';y') = {Q_{\left( {I;{{45}^0}} \right)}}\left( I \right)\) ta có:

\(\left\{ \begin{array}{l}x' = 1.\cos 45 - 1.\sin 45 = 0\\y' = 1.\sin 45 + 1.\cos 45 = \sqrt 2 \end{array} \right. \) \(\Rightarrow I_1\left( {0;\sqrt 2 } \right)\)

 Loigiaihay.com


Bình chọn:
4.6 trên 23 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí