Bài 3 trang 103 SGK Đại số và Giải tích 11


Tìm các số hạng của cấp số nhân có năm số hạng, biết:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các số hạng của cấp số nhân \((u_n)\) có năm số hạng, biết:

LG a

\(u_3= 3\) và \(u_5= 27\);

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}.{q^{n - 1}}\).

Lời giải chi tiết:

Trong cấp số nhân, ta có: \({u_n} = {u_1}.{q^{n - 1}}\) Trong đó \({u_1}\) là số hạng thứ nhất, \({u_n}\) là số hạng thứ n và q là công bội.

Mà:

\(\begin{array}{l}\,\,\left\{ \begin{array}{l}{u_3} = 3\\{u_5} = 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^2} = 3\\{u_1}.{q^4} = 27\end{array} \right. \\\Rightarrow \frac{{{u_1}.{q^4}}}{{{u_1}.{q^2}}} = \frac{{27}}{3} \Leftrightarrow {q^2} = 9 \Leftrightarrow q = \pm 3\\+ )\,\,q = 3 \Rightarrow {u_1}{.3^2} = 3 \\\Leftrightarrow {u_1} = \dfrac{3}{{{3^2}}} = \dfrac{1}{3}\\ \Rightarrow CSN:\,\,\dfrac{1}{3};1;3;9;27\\+ )\,\,q = - 3 \Rightarrow {u_1}.{\left( { - 3} \right)^2} = 3\\ \Leftrightarrow {u_1} = \dfrac{3}{{{{\left( { - 3} \right)}^2}}} = \dfrac{1}{3} \\ \Rightarrow CSN:\,\,\dfrac{1}{3}; - 1;3; - 9;27\\\end{array}\)

LG b

\(u_4– u_2= 25\) và \(u_3– u_1= 50\)

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân: \({u_n} = {u_1}.{q^{n - 1}}\).

Lời giải chi tiết:

Ta có: \({u_4} = {u_1}{q^3};{u_2} = {u_1}q;{u_3} = {u_1}{q^2}\)

Theo bài ra:

\(\begin{array}{l}\,\,\left\{ \begin{array}{l}{u_4} - {u_2} = 25\\{u_3} - {u_1} = 50\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} - {u_1}q = 25\\{u_1}{q^2} - {u_1} = 50\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^2} - 1} \right) = 25\\{u_1}\left( {{q^2} - 1} \right) = 50\end{array} \right.\\\Rightarrow \frac{{{u_1}q\left( {{q^2} - 1} \right)}}{{{u_1}\left( {{q^2} - 1} \right)}} = \frac{{25}}{{50}} \Leftrightarrow q = \dfrac{{25}}{{50}} = \dfrac{1}{2}\\\Rightarrow {u_1}.{\left( {\frac{1}{2}} \right)^2} - {u_1} = 50\\ \Leftrightarrow {u_1}.\left( { - \dfrac{3}{4}} \right) = 50 \Leftrightarrow {u_1} = \dfrac{{ - 200}}{3}\\\Rightarrow CSN:\,\,\dfrac{{ - 200}}{3};\dfrac{{ - 100}}{3};\dfrac{{ - 50}}{3};\dfrac{{ - 25}}{3};\dfrac{{ - 25}}{6}\end{array}\)

 Loigiaihay.com


Bình chọn:
4.3 trên 57 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí