Lý thuyết về giới hạn của hàm số


Giới hạn hữu hạn, giới hạn vô cực, các giới hạn đặc biệt.

1. Giới hạn hữu hạn

Quảng cáo

Lộ trình SUN 2025

+) Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\{x_0}\rm{\} }.\)

\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈ K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\)ta có
\(\lim f(x_n) =L\). 

+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((x_0; b)\).

\(\underset{x\rightarrow x_{_{0}}^{+}}{\lim} f(x) = L\) khi và chỉ khi dãy số \((xn) bất kì, \(x_0<x_n< b\) và \(x_n\rightarrow x_0\) ,ta có \(\lim f(x_n) = L\).

+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; x_0)\).

\(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(a <x_n< x_0\) và \(x_n\rightarrow x_0\), ta có
\(\lim f(x_n) = L\).

+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\).

\(\underset{x\rightarrow+\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì \(lim f(x_n) = L\).

+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((-∞; a)\).

\(\underset{x\rightarrow-\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n< a\), \(x_n\rightarrow -\infty\) thì \(\lim f(x_n) = L\).

2. Giới hạn vô cực

Sau đây là hai trong số nhiều loại giới hạn vô cực khác nhau:

+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\), \(\underset{x\rightarrow+\infty }{\lim} f(x) = -∞\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì ta có \(\lim f(x_n) = -∞\)

+) Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\{x_0}\rm{\} }.\)

\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = +∞\) và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\) thì ta có: \(\lim f(x_n) = +∞\).

Nhận xét: \(f(x)\) có giới hạn \(+∞ \) khi và chỉ khi \(-f(x)\) có giới hạn \(-∞\).

3. Các giới hạn đặc biệt

a) \(\underset{x\rightarrow x_{_{0}}}{\lim} x = x_0\);

b) \(\underset{x\rightarrow x_{_{0}}}{\lim}c = c\);

c) \(\underset{x\rightarrow \pm \infty }{\lim} c = c\);

d) \(\underset{x\rightarrow \pm \infty }{\lim}\) \(\frac{c}{x} = 0\) (\(c\) là hằng số);

e) \(\underset{x\rightarrow+\infty }{\lim} x^k= +∞\), với \(k\) nguyên dương;

f) \(\underset{x\rightarrow-\infty }{lim} x^k= -∞\), nếu \(k\) là số lẻ;

g)  \(\underset{x\rightarrow-\infty }{lim}x^k = +∞\) , nếu \(k\) là số chẵn.

4. Định lí về giới hạn hữu hạn

Định lí 1. 

a) Nếu \(\underset{x\rightarrow x_{_{0}}}{lim} = L\) và \(\underset{x\rightarrow x_{_{0}}}{lim}\) \(g(x) = M\) thì:

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) + g(x)] = L + M\);

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) - g(x) = L - M\);

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) . g(x)] = L.M\);

\(\underset{x\rightarrow x_{_{0}}}{lim}\) \(\frac{f(x)}{g(x)}\)= \(\frac{L}{M}\) (nếu \(M ≠ 0\)).

b) Nếu \(f(x) ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\), thì \(L ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim}\sqrt {f(x)} = \sqrt L\)

Chú ý: Định lí 1 vẫn đúng khi \(x_n\rightarrow +\infty\) hoặc \(x_n\rightarrow -\infty\).

Định lí 2.

\(\underset{x\rightarrow x_{_{0}}}{lim} f(x) = L\) khi và chỉ khi \(\underset{x\rightarrow x_{_{0}}^{+}}{lim}\) f(x) = \(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\).

5. Quy tắc về giới hạn vô cực

a) Quy tắc giới hạn của tích \(f(x).g(x)\)

+ Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) =  \pm \infty \) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = L \ne 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right]\) được cho trong bảng sau:

b) Quy tắc tìm giới hạn của thương \(\dfrac{f(x)}{g(x)}\)

+ Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L \ne 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 0\) và \(g\left( x \right) > 0\) hoặc \(g\left( x \right) < 0\) với mọi \(x \in J\backslash \left\{ {{x_0}} \right\}\), trong đó \(J\) là một khoảng nào đó chứa \({x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) được cho trong bảng sau:

Loigiaihay.com


Bình chọn:
4.4 trên 47 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.