Bài 6 trang 133 SGK Đại số và Giải tích 11

Bình chọn:
4.6 trên 32 phiếu

Giải bài 6 trang 133 SGK Đại số và Giải tích 11. Tính:

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

\(\eqalign{& \mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr} \)

Phương pháp giải:

Sử dụng quy tắc tìm giới hạn của tích \(f(x).g(x)\).

Lời giải chi tiết:

\(\begin{array}{l}
\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {{x^4} - {x^2} + x - 1} \right) \\= \mathop {\lim }\limits_{x \to + \infty } {x^4}\left( {1 - \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^3}}} - \dfrac{1}{{{x^4}}}} \right)\\
\mathop {\lim }\limits_{x \to + \infty } {x^4} = + \infty \\
\mathop {\lim }\limits_{x \to + \infty } \left( {1 - \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^3}}} - \dfrac{1}{{{x^4}}}} \right) = 1 > 0\\
\Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {{x^4} - {x^2} + x - 1} \right) = + \infty \\
\end{array}\)

LG b

\(\eqalign{& & \mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr }\)

Phương pháp giải:

Sử dụng quy tắc tìm giới hạn của tích \(f(x).g(x)\).

Lời giải chi tiết:

\(\begin{array}{l}
\,\,\mathop {\lim }\limits_{x \to - \infty } \left( { - 2{x^3} + 3{x^2} - 5} \right) \\= \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( { - 2 + \dfrac{3}{x} - \dfrac{5}{{{x^2}}}} \right)\\
\mathop {\lim }\limits_{x \to - \infty } {x^3} = - \infty \\
\mathop {\lim }\limits_{x \to - \infty } \left( { - 2 + \dfrac{3}{x} - \dfrac{5}{{{x^2}}}} \right) = - 2 < 0\\
\Rightarrow \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( { - 2 + \dfrac{3}{x} - \dfrac{5}{{{x^2}}}} \right) = + \infty \\
\end{array}\)

LG c

\(\eqalign{&\mathop {\lim }\limits_{x \to - \infty } (\sqrt {{x^2} - 2x + 5}) \cr } \)

Phương pháp giải:

Sử dụng quy tắc tìm giới hạn của tích \(f(x).g(x)\).

Lời giải chi tiết:

\(\begin{array}{l}
\,\,\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - 2x + 5} } \right) \\= \mathop {\lim }\limits_{x \to - \infty } \left| x \right|\sqrt {1 - \dfrac{2}{x} + \dfrac{5}{{{x^2}}}} \\
= \mathop {\lim }\limits_{x \to - \infty } \left[ { - x\sqrt {1 - \dfrac{2}{x} + \dfrac{5}{{{x^2}}}} } \right]\\
\mathop {\lim }\limits_{x \to - \infty } \left( { - x} \right) = + \infty \\
\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {1 - \dfrac{2}{x} + \dfrac{5}{{{x^2}}}} } \right) = 1 > 0\\
\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - 2x + 5} } \right) = + \infty \\
\end{array}\)

LG d

\(\eqalign{&\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 - 2x}} \cr} \)

Phương pháp giải:

Sử dụng quy tắc tìm giới hạn của tích \(f(x).g(x)\).

Lời giải chi tiết:

\(\begin{array}{l}
\,\,\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^2} + 1} + x}}{{5 - 2x}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x\left( {\sqrt {1 + \dfrac{1}{{{x^2}}}} + 1} \right)}}{{5 - 2x}}\\
= \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {1 + \dfrac{1}{{{x^2}}}} + 1}}{{\dfrac{5}{x} - 2}} = \dfrac{{1 + 1}}{{ - 2}} = - 1
\end{array}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Giới hạn của hàm số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng