Bài 2 trang 132 SGK Đại số và Giải tích 11

Bình chọn:
3.3 trên 18 phiếu

Giải bài 2 trang 132 SGK Đại số và Giải tích 11. Cho hàm số

Đề bài

Cho hàm số

\(f(x) = \left\{ \matrix{
\sqrt x + 1 \text{ nếu   }x\ge 0 \hfill \cr 
2x\text{ nếu   }x < 0 \hfill \cr} \right.\)

Và các dãy số \((u_n)\) với \(u_n= \frac{1}{n}\), \((v_n)\) với \(v_n= -\frac{1}{n}\).

Tính \(\lim u_n\), \(\lim v_n\), \(\lim f (u_n)\) và \(\lim (v_n)\).

Từ đó có kết luận gì về giới hạn của hàm số đã cho khi \(x → 0\) ?

Lời giải chi tiết

\(\begin{array}{l}
\lim {u_n} = \lim \frac{1}{n} = 0\\
\lim {v_n} = \lim \left( { - \frac{1}{n}} \right) = 0\\
{u_n} = \frac{1}{n} > 0 \Rightarrow f\left( {{u_n}} \right) = \sqrt {\frac{1}{n}} + 1 \Rightarrow \lim f\left( {{u_n}} \right) = 1\\
{v_n} = - \frac{1}{n} < 0 \Rightarrow f\left( {{v_n}} \right) = - \frac{2}{n} \Rightarrow \lim f\left( {{v_n}} \right) = 0\\
\left\{ \begin{array}{l}
\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\sqrt x + 1} \right) = 1\\
\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x} \right) = 0
\end{array} \right.\\ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)
\end{array}\)

Vậy hàm số đã cho không có giới hạn khi \(x \to 0\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Giới hạn của hàm số

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu