Bài 4.1, 4.2 phần bài tập bổ sung trang 22 SBT toán 7 tập 2


Giải bài 4.1, 4.2 phần bài tập bổ sung trang 22 sách bài tập toán 7. Viết bốn đơn thức đồng dạng với đơn thức -2x^3y^5 rồi tính tổng của năm đơn thức đó.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Bài 4.1

Viết bốn đơn thức đồng dạng với đơn thức \( - 2{{\rm{x}}^3}{y^5}\) rồi tính tổng của năm đơn thức đó.    

Phương pháp giải:

Sử dụng:

+) Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng phần biến.

+) Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.

Lời giải chi tiết:

Bốn đơn thức đồng dạng với đơn thức \( - 2{{\rm{x}}^3}{y^5}\) là:

\({x^3}{y^5};\,\,3{x^3}{y^5};\,\, - {x^3}{y^5};\,\,7{x^3}{y^5}\)

Tổng của năm đơn thức là: 

\( {x^3}{y^5} + \,3{x^3}{y^5} + \left( { - {x^3}{y^5}} \right) \)\(+ \,7{x^3}{y^5} + \left( { - 2{x^3}{y^5}} \right) \)
\( = \left( {1 + 3 - 1 + 7 - 2} \right).{x^3}{y^5} = 8{x^3}{y^5} \)

Bài 4.2

Khẳng định nào sau đây là sai?

(A) \(3{{\rm{x}}^2}{{\rm{y}}^3}\) và \(3{{\rm{x}}^3}{y^2}\) là hai đơn thức đồng dạng;

(B) \( - 3{{\rm{x}}^2}{y^3}\) và \(3{{\rm{x}}^2}{y^3}\) là hai đơn thức đồng dạng;

(C) \({\left( {xy} \right)^2}\) và \(3{{\rm{x}}^2}{y^2}\) là hai đơn thức đồng dạng;

(D) \( - 2{\left( {xy} \right)^3}\) và \(5{{\rm{x}}^3}{y^3}\) là hai đơn thức đồng dạng.

Phương pháp giải:

Sử dụng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng phần biến.

Lời giải chi tiết:

Hai đơn thức \(3{{\rm{x}}^2}{{\rm{y}}^3}\) và \(3{{\rm{x}}^3}{y^2}\) không đồng dạng với nhau vì phần biến số khác nhau. 

Vậy chọn đáp án A.

Loigiaihay.com


Bình chọn:
4.3 trên 10 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí